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Abstract

The topic of this dissertation thesis is the
control and analysis of acoustic and elastic
wave fields based on selected inhomoge-
neous structures. The work is conceived
as a set of six author publications, each
of which is directly related to the topic
of this work. The introductory theoret-
ical part is devoted to a brief overview
of mathematical methods that are often
used in the attached publications. In the
next section, the mentioned publications
are attached, each of which is provided
with a summary comment. The first two
publications relate to the description of
the propagation of Love-type elastic sur-
face waves in an inhomogeneous isotropic
layer, the further one then to the propa-
gation of acoustic waves in a waveguide
with a non-uniform mean flow. The fourth
publication discusses a new type of elas-
tic inhomogeneous structure that allows
manipulation of elastic P-waves, such as
focusing and deflecting. This is followed
by a publication devoted to finding exact
analytical solutions of the model equa-
tion describing the propagation of elastic
SH-waves in locally periodic functionally
graded materials. The last attached publi-
cation deals with finding the Willis model
for an acoustic waveguide with a contin-
uously varying cross-sectional area. The
conclusion of the work contains an overall
summary and further potential research
opportunities.

Keywords: elastic waves, acoustic
waves, inhomogeneous structures, Heun
functions, triconfluent Heun functions,
functionally graded materials, locally
periodic structures, Webster-type
equation, Floquet-Bloch method

Abstrakt

Tématem této disertační práce je řízení
a analýza akustických a elastických vlno-
vých polí na základě vybraných nehomo-
genních struktur. Práce je koncipována
jako soubor šesti autorových publikací,
přičemž každá z nich přímo souvisí s té-
matem této práce. Úvodní teoretická část
je věnována stručnému přehledu matema-
tických metod, které se v přiložených pu-
blikacích často využívají. V další části
jsou poté přiloženy zmíněné publikace,
přičemž každá z nich je opatřena shrnují-
cím komentářem. První dvě publikace se
týkají popisu šíření elastických povrcho-
vých vln Loveho typu v nehomogenní izot-
ropní vrstvě, dálší pak šíření akustických
vln ve vlnovodu s neuniformním středním
prouděním. Čtvrtá publikace pojednává o
novém typu elastické nehomogenní struk-
tury, která umožňuje manipulaci elastic-
kých P-vln, jako například fokusace a de-
flexe. Následuje publikace věnující se na-
lezení přesných analytických řešení mode-
lové rovnice popisující šíření elastických
SH-vln v lokálně periodických funkčně gra-
dovaných materiálech. Poslední přiložená
publikace se zaobírá nalezením Willisova
modelu pro akustický vlnovod se spojitě
proměnným průřezem. Závěr práce obsa-
huje celkové shrnutí a další potenciální
možnosti výzkumu.

Klíčová slova: elastické vlny, akustické
vlny, nehomogenní struktury, Heunovy
funkce, trikonfluentní Heunovy funkce,
funkčně gradované materiály, lokálně
periodické struktury, rovnice Webstrova
typu, Floquetova-Blochova metoda
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Chapter 1

Introduction

This dissertation thesis deals with the control and analysis of acoustic and
elastic wave fields based on selected inhomogeneous structures as it’s title
suggests. The possibility of controlling acoustic and elastic wave fields is
an issue of great scientific potential from both a theoretical and a practical
perspective. Even though many types of inhomogeneous structures are in-
tensively studied, the majority of research in this area is devoted to either
numerical simulations or practical experiments. Therefore, this thesis focuses
primarily on employing various types of exact or approximate analytical meth-
ods to express the closed form analytical solutions to the selected problems in
acoustics and elastoacoustics (elastodynamics) in order to determine how does
the specific inhomogeneous structure affect the propagation of the respective
type of waves and how can this be potentially used for a specific type of
wave manipulation. We mean by inhomogeneous structure that one or more
parameters that characterise the structure are spatially dependent, whereas in
this thesis the dependence is assumed only along one of the chosen coordinate
axes, typically in the same direction as the waves propagate or perpendicular
to it. The further requirement is that all of the studied wave related issues are
in the linear regime. The main advantages of using the exact/approximate
analytical solutions is that they enable a much simpler and more elegant
way for any further mathematical manipulations compared to the numerical
methods. Additionally, they typically offer a much deeper insight into the
behavior of waves within the respective inhomogeneous structure. Moreover,
they can serve as a benchmark solution for any other type of approximate
analytical or numerical method.

The thesis is conceived as a collection of six author publications and is
organised as follows: First, in Chap. 2 a brief overview of the mathematical
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1. Introduction .....................................
methods which are often used in the presented papers is provided in order
to make reading easier for anyone not familiar with them. Next, in Chap.
3 the author publications are presented together with an introductory text
describing an analytical approach used for solving the specific problems in
each one of the publications and highlighting the advantages of analytical
solutions in more detail. Also, each publication is provided with a short
author commentary for the sake of readability. Finally, in Chap. 4 a summary
of the work is presented together with possibilities for a further research.

This disseration thesis does not include a separate chapter devoted to the
state of the art, as this is present in the introduction of each of the presented
publications, which would lead to an unnecessary duplication.
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Chapter 2

Mathematical methods

Since this thesis is realized as a collection of selected papers published by
the author, the most appropriate way to start the thesis is to provide the
reader with a brief overview of some of the mathematical methods used in the
papers that are usually discussed only very superficially in the appendices (of
the mentioned papers) and therefore the reading experience can sometimes
feel a bit cumbersome for someone not familiar with those.

The text in this chapter is organised as follows: First, the Heun differential
equation and it’s triconfluent form are discussed in Sec. 2.1 together with a
brief classification of the singular points of differential equations and deriva-
tion of the corresponding exact analytical solutions. Then, the Webster-type
equation representing the model equation for the majority of the presented
papers is defined in Sec. 2.2. Next, the Wentzel–Kramers–Brillouin approx-
imation method is presented in Sec. 2.3. Sec. 2.4 is then devoted to the
Floquet-Bloch theory - a very powerful tool to solve problems regarding wave
propagation in (locally) periodic structures. Lastly, Sec. 2.5 deals with the
mathematical description of the so called functionally graded materials, which
are materials whose parameters vary continuously along one or more spatial
directions according to some material function.
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2. Mathematical methods ................................
2.1 Heun equations

This section starts with a brief classification of singular points of linear second
order differential equations. Next, the Frobenius solution is presented for a
general linear second order differential equation around it’s regular singular
point followed by the direct application to the Heun differential equation to
obtain the so called Heun functions. Finally, the triconfluent Heun equation
is presented together with the corresponding series solutions - the triconfluent
Heun functions.

2.1.1 Sigular points of differential equations

To begin this part, assume the most general form of a second order linear
differential equation with non-costant coefficients p(z), q(z) in the following
form

d2f(z)
dz2 + p(z)df(z)

dz
+ q(z)f(z) = 0 . (2.1)

Now we pick an arbitrary point z = z0. If at this point the functions p(z), q(z)
can be expressed by a Taylor series as

p(z) =
∞∑

n=0
pn(z − z0)n , q(z) =

∞∑
n=0

qn(z − z0)n , (2.2)

then we say that both the functions are analytic at z = z0 and the point itself
is called an ordinary point, see e.g., [1]. On the contrary, if p(z) or q(z) (or
both) diverge at z = z0 then this point is called a singular point. However,
the differential equation can still posess a finite solution at a singular point
z = z0 if (z − z0)p(z) and (z − z0)2q(z) are both analytic at z = z0. In this
case we call z = z0 the regular singular point of the corresponding differential
equation. Otherwise, we call it an irregular singular point (see e.g., [1]).

2.1.2 Frobenius solution around regular singular point

Now, let’s focus on finding the analytical expression for the solution of a
differential equation in the vicinity of it’s regular singular point z = z0,
hereinafter referred to as the Frobenius solution, see e.g., [1, 2]. First, let’s
rewrite Eq. (2.1) into the more convenient form:

d2f(z)
dz2 + P (z)

z − z0

df(z)
dz

+ Q(z)
(z − z0)2 f(z) = 0 , (2.3)

4



................................... 2.1. Heun equations

where we now assume both P (z), Q(z) to be analytic at z = z0, i.e.,

P (z) =
∞∑

n=0
Pn(z − z0)n , Q(z) =

∞∑
n=0

Qn(z − z0)n . (2.4)

Therefore (according to the definition provided in the previous subsection),
z = z0 is a regular singular point of Eq. (2.3). For the sake of the text to
follow, the expressions for the coefficients P0, Q0 which play a significant role
(as will be shown further in the text) for the currently presented method
should be written down in terms of the functions p(z), q(z) (the derivation
follows simply by comparing Eqs. (2.1) and (2.3)) as

P0 = lim
z→z0

(z − z0)p(z) , Q0 = lim
z→z0

(z − z0)2q(z) . (2.5)

Let’s now focus on finding a solution to Eq. (2.3) in the following form

f(z) = (z − z0)σ
∞∑

n=0
cn(z − z0)n , (2.6)

which is usually referred to as the Frobenius solution, see e.g., [1, 2]. The first
and second derivative of the Frobenius solution (2.6) can then be expressed
as

f ′(z) =
∞∑

n=0
(σ + n)cn(z − z0)σ+n−1 ,

f ′′(z) =
∞∑

n=0
(σ + n)(σ + n − 1)cn(z − z0)σ+n−2 .

(2.7)

For convenience, we rewrite Eq. (2.3) as

(z − z0)2 d2f(z)
dz2 + (z − z0)P (z)df(z)

dz
+ Q(z)f(z) = 0 . (2.8)

In order to ensure that the assumed Frobenius solution (2.6) solves Eq. (2.3)
we insert the expressions (2.4), (2.6) and (2.7) into Eq. (2.8) and set the term
before each of the (linearly independent) respective power of (z − z0) equal
to 0, resulting in (after some algebra) the following system of equations (see
e.g., [2])

c0I(σ) = 0 ,

c1I(σ + 1) + c0[P1σ + Q1] = 0 ,

c2I(σ + 2) + c1[P1(σ + 1) + Q1] + c0[P2σ + Q2] ,

...

cnI(σ + n) +
n∑

m=1
cn−m[Pm(σ + n − m) + Qm] = 0 ,

(2.9)

where I(σ) is defined as

I(σ) ≡ σ2 + (P0 − 1)σ + Q0 . (2.10)

5



2. Mathematical methods ................................
The first observation we make from the system of Eqs. (2.9) is that the value
of c0 can be chosen arbitrarily, whereas the standard choice is (without the
loss of generality)

c0 = 1 . (2.11)
The first of Eqs. (2.9) that can now be expressed as

σ2 + (P0 − 1)σ + Q0 = 0 (2.12)
is usually called the indicial equation of Eq. (2.3) and since it represents
a quadratic equation in σ it determines the two possible values of σ, each
corresponding to the one of the linearly independent Frobenius solution to
Eq. (2.3).

In general, by solving the system of Eqs. (2.9) we can determine the
coefficients cn of the Frobenius solution (2.6) for each respective root of the
indicial equation (2.12) σ1, σ2 and by that the solution is complete. However,
to solve this system one needs to know the coefficients Pn, Qn of the Taylor
series of the functions P (z), Q(z) (2.4) which are typically unknown and their
computation can be unnecessarily complicated. Therefore, in the following
subsection an another method to obtain the coefficients of the Frobenius
solution specifically for the so called Heun equation is presented that is much
more practical particularly for the numerical evaluation of it’s respective
solution at a given point.

It should also be noted that in order that both the Frobenius solutions of
Eq. (2.3) corresponding to the two roots of the indicial equation (2.12) σ1, σ2
are guaranteed linearly independent then the following condition must hold
(proof can be found in e.g., [2]):

σ1 − σ2 /∈ Z . (2.13)

2.1.3 Heun equation

In this part the previously derived indicial equation (2.12) is employed to
express the Frobenius solution to the Heun equation, which is the most
general second order linear differential equation with four regular sigularities,
meaning that every second order linear differential equation with four regular
singular points can be transformed to the Heun equation, see e.g., [3–5].

The canonical form of the Heun equation can be written in the following
form (see e.g., [2–4, 6]):

d2f(z)
dz2 +

(
γ

z
+ δ

z − 1 + ε

z − a

) df(z)
dz

+ αβz − q

z(z − 1)(z − a)f(z) = 0 , (2.14)

6



................................... 2.1. Heun equations

with the regular singular points located at z = 0, 1, a, ∞, where a ∈ C and
(for simplicity) |a| > 1. The generally complex parameters α, β, γ, δ, ε must
satisfy the condition (see e.g., [2, 3, 6])

α + β + 1 = γ + δ + ε . (2.15)

Furthemore, the choice of the parameter q ∈ C is arbitrary. In order to express
the Frobenius solution (see the subsection above) to Eq. (2.14) around one
of it’s regular singular points we start by calculating the two roots of the
indicial equation (2.12) by employing the expressions (2.5). The results for
all of the four singularities are given in Tab. 2.1, see e.g., [2]. Please note
that in the case of the singular point z0 = ∞ the first step is to perform
a coordinate transformation z = 1/w on Eq. (2.14) and then to solve the
indicial equation for the transformed singularity w0 = 1/z0 = 0.

Point Roots σ

z = 0 0, 1 − γ

z = 1 0, 1 − δ

z = a 0, 1 − ε

z = ∞ α, β

Table 2.1: Roots of the indicial equation for all of the regular singular points of
the Heun equation.

Assume now the regular singular point z0 = 0. The Frobenius solution
corresponding to the first root of the indicial equation σ1 = 0 can therefore
be written in the form of the following Maclaurin series (see Eq. (2.6))

f(z) =
∞∑

n=0
cnzn . (2.16)

By substituting the expression (2.16) into Eq. (2.14), multiplying both sides
with the term z(z − 1)(z − a) and after some algebra we get

∞∑
n=0

(n + α)(n + β)cnzn+1 −
∞∑

n=0
{n [(n − 1 + γ)(1 + a) + aδ + ε] + q} cnzn

+
∞∑

n=0
an(n − 1 + γ)cnzn−1 = 0 , (2.17)

where we have also used the condition (2.15). If we set the term before each
of the respective powers of zn equal to zero we get the recurrence relation for
the coefficients cn (see e.g., [6])

Tncn+1 − (Sn + q)cn + Rncn−1 = 0 , (2.18)

where
Rn = (n − 1 + α)(n − 1 + β) ,

Sn = n[(n − 1 + γ)(1 + a) + aδ + ε] ,

Tn = a(n + 1)(n + γ) .

(2.19)

7



2. Mathematical methods ................................
Since the recurrence equation (2.18) is of a second order, we need to specify
the first two coefficients of the Frobenius solution (2.16) c0, c1. The first one
is given (according to the previous subsection) by Eq. (2.11). The second
one can be obtained either from the second of Eqs. (2.9) or directly by Eq.
(2.18) by seting c−1 = 0, which is consistent with the Maclaurin series (2.16).
Hence, the following values for the first two coefficients can be expressed as

c0 = 1 , c1 = q

aγ
(2.20)

The recurrence equation (2.18) together with the initial conditions (2.20) then
define the first Frobenius solution to the Heun equation (for z0 = 0, σ1 = 0) -
the (local) Heun function (see e.g., [3, 6])

Hℓ(a, q; α, β, γ, δ; z) ≡
∞∑

n=0
cnzn . (2.21)

The second linearly independent solution corresponding to the second root of
the indical equation σ2 = 1 − γ can then be found by the same procedure,
resulting in

z1−γHℓ(a, (aδ + ε)(1 − γ) + q; α + 1 − γ, β + 1 − γ, 2 − γ, δ; z) . (2.22)

It should be noted that both of those solutions converge for (see e.g., [2, 6])

|z| < 1 . (2.23)

Since the approach is the same for all the other (regular) singular points
(see Tab. 2.1), the expressions for the corresponding local solutions to the
Heun equation (2.14) will be just stated here without repeating the whole
procedure described above (see e.g., [6]):

. z0 = 1, σ1 = 0:

Hℓ(1 − a, αβ − q; α, β, δ, γ; 1 − z) , (2.24)

. z0 = 1, σ2 = 1 − δ:

(1 − z)1−δHℓ(1 − a, ((1 − a)γ + ε)(1 − δ) + αβ − q;
α + 1 − δ, β + 1 − δ, 2 − δ, γ; 1 − z) , (2.25)

. z0 = a, σ1 = 0:

Hℓ

(
a

a − 1 ,
αβa − q

a − 1 ; α, β, ε, δ; a − z

a − 1

)
, (2.26)

8



................................... 2.1. Heun equations

. z0 = a, σ1 = 1 − ε:

(
a − z

a − 1

)1−ε

Hℓ

(
a

a − 1 ,
(a(δ + γ) − γ)(1 − ε)

a − 1 + αβa − q

a − 1 ;

α + 1 − ε, β + 1 − ε, 2 − ε, δ; a − z

a − 1

)
, (2.27)

. z0 = ∞, σ1 = α:

z−αHℓ

(1
a

, α(β − ε) + α

a
(β − δ) − q

a
; α, α − γ + 1, α − β + 1, δ; 1

z

)
,

(2.28). z0 = ∞, σ1 = β:

z−βHℓ

(1
a

, β(α − ε) + β

a
(α − δ) − q

a
; β, β − γ + 1, β − α + 1, δ; 1

z

)
.

(2.29)

Note the functional dependence 1/z in the last two Eqs. (2.28) and (2.29)
which corresponds to the coordinate transformation w = 1/z as mentioned
above. The respective regions of convergences can then be determined by
the radius of convergence of the Heun function (2.23) for each of the cases
individually. Moreover, for all of the expressions above an additional condition
on one (or more) of the parameters should be ensured according to Eq. (2.13),
e.g., γ /∈ Z in the case z0 = 0. But this situation is not relevant for the papers
presented in Chapt. 3.

2.1.4 Triconfluent Heun equation

The triconfluent Heun equation (THE) can be derived by the coalescence of
all of the regular singular points of the Heun equation (2.14) at ∞ (see e.g.,
[3, 5]), resulting in the following canonical form

d2f(z)
dz2 − (3z2 + γ)df(z)

dz
+ [α + (β − 3)z]f(z) = 0 , (2.30)

where the parameters α, β, γ are generally complex. Therefore, the THE
(2.30) has only one singular point at z = ∞ that is now an irregular singular
point. The solution around the ordinary point z0 = 0 can now be express
simply in the form of the Maclaurin series

f(z) =
∞∑

n=0
cnzn . (2.31)

9



2. Mathematical methods ................................
The procedure is now exactly the same as presented in the previous subsection.
We substitute the series solution (2.31) into Eq. (2.30) and by seting the terms
before each respective power of z equal to 0 we get the following recurrence
equation for the coefficients cn:

n(n − 1)cn − (n − 1)γcn−1 + αcn−2 + (β + 6 − 3n)cn−3 = 0 . (2.32)

Together with the following set of initial conditions (see e.g., [3])

c0 = 1 , c1 = 0 , c2 = −α

2 (2.33)

the recurrence equation (2.32) defines the triconfluent Heun function (THF):

THF(α, β, γ; z) ≡
∞∑

n=0
cnzn . (2.34)

The second linearly independent solution to the triconfluent Heun equation
can then be written as (see e.g., [3])

f(z) = exp(z3 + γz)THF(α, −β, γ; −z) , (2.35)

where the following condition must hold

γ ̸= 0 , (2.36)

and the radius of convergence for both the solutions is (again)

|z| < 1 . (2.37)

To close this section it is convenient to point out that both the Heun
functions and the triconfluent Heun functions are implemented in some of
the most widely used computer algebraic systems such as Maple (version 17
or higher) and Mathematica (version 12.1 and higher). Therefore, it is very
straighforward and simple to evaluate those functions for any combination of
the input parameters at any point.

2.2 Webster-type equation

For the purpose of this thesis and especially for the papers presented in
Chapter 3 it is convenient to introduce a general form of the Webster-like
equation which is a second order linear differential equation that can be used
to describe various physical problems regarding the propagation of linear
waves in a media that is inhomogeneous in one direction (in this case along

10



................................. 2.3. WKB approximation

the z coordinate). The name comes from the similarity with the so-called
Webster horn equation, which is an equation describing the propagation of
linear acoustic waves inside of a duct of slowly varying cross-sectional area,
see e.g., [7]. The general form of this equation for can be written as

d2f(z)
dz2 + 1

η(z)
dη(z)

dz

df(z)
dz

+ k2ζ2(z)f(z) = 0 , (2.38)

where the function η(z) describes the profile of the inhomogeneity of various
parameters of the inhomogeneous media (density, Young modulus, shear
modulus, flow velocity distribution, waveguide cross-sectional area, etc.) and
k stands for the wavenumber, which is a monotonically increasing function
of the frequency. The function ζ(z) has no general physical interpretation
and in some cases is equal to 1 (e.g., in the original Webster horn equation).
Note that in the case of inhomogeneous elastic materials the function η(s) is
usually referred to as the material function, see Sec. 2.5.

2.3 WKB approximation

Wentzel–Kramers–Brillouin (WKB) approximation method is a powerful tool
to express a closed form approximate analytical solution to linear differential
equation with non-constant coefficients. In this section this technique is
applied specifically to the Webster-type equation, as defined in Sec. 2.2. The
procedure to follow is inspired by the book [8].

For convenience we assume all the components of the equation f(z), η(z),
ζ(z), k, z to be dimensionless. By expressing the solution in the following
form (see e.g., [8])

f(z) = exp
(

i
∫

κ(z) dz

)
, (2.39)

where i denotes the imaginary unit, and substituting into Eq. (2.38) we
obtain

iκ′(z) − κ2(z) + iη
′(z)

η(z) κ(z) + k2ζ2(z) = 0 , (2.40)

where the notation ′ ≡ d/dz is used hereinafter for the sake of readability.
The following series expansion is now assumed for the function κ(z) (see e.g.,
[8]):

κ(z) = kκ1(z) + κ2(z) + κ3(z)
k

+ κ4
k2 + . . . (2.41)

We now substitute the expression (2.41) into Eq. (2.40), resulting in the
following system of equations corresponding to the coefficients of the respective

11



2. Mathematical methods ................................
powers of k:

ζ2 − κ2
1(z) = 0 ,

iη
′(z)

η(z) κ1(z) + iκ′
1(z) − 2κ1(z)κ2(z) = 0 ,

...

(2.42)

The solution to the system of Eqs. (2.42) is then

κ1(z) = ±ζ(z) , κ2(z) = i
2

(
η′(z)
η(z) + ζ ′(z)

ζ(z)

)
, . . . (2.43)

Since the dimensionless wavenumber k is a monotonically increasing function
of the frequency, the high frequency approximation can be written as

k ≫ 1 . (2.44)

The function κ(z) can now be approximated by keeping only the first two
terms of the expansion (2.41):

κ(z) ≈ kκ1(z) + κ2(z) = ±kζ(z) + i
2

(
η′(z)
η(z) + ζ ′(z)

ζ(z)

)
. (2.45)

By returning back to the expression (2.39) the WBK solution to the Webster-
like equation (2.38) can be expressed as a linear combination of the two
linearly independent functions

f(z) ≈ A√
η(z)ζ(z)

exp

ik
z∫

z0

ζ(z̃) dz̃

+ B√
η(z)ζ(z)

exp

−ik
z∫

z0

ζ(z̃) dz̃

 ,

(2.46)
where A, B stand for the integration constants. Finally, it is important to
emphasise that this solution can be considered as a truly analytical solution
if and only if the integral

∫
ζ(z) dz can be evaluated analytically, otherwise a

numerical method would need to be employed and we can no longer consider
such solution as an analytical one.

2.4 Floquet-Bloch theory

This section focuses on one of the most widely used method for obtaining
solution to the differential equation with periodic non-constant coefficients
- the Floquet-Bloch theory. A very good and comprehensive review of this
theory with applications to the Schrödinger’s equation can be found in the
book [9].

12
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2.4.1 Equation with periodic coefficients

First, let’s start with writing down the most general form of a second order
linear differential equation with periodic coefficients as

f ′′(z) + p(z)f ′(z) + q(z)f(z) = 0 , (2.47)

where (once again) the notation ′ ≡ d/dz for the derivative is used in this
section for the sake of readability and the functions p(z), q(z) are both periodic
with the period d, which can be expressed as

p(z + d) = p(z) , q(z + d) = q(z) . (2.48)

2.4.2 Liouville’s formula

It is now convenient to derive the Liouville’s formula for the Wronskian of
Eq. (2.47) that is defined as (see e.g., [1])

W [f1, f2](z) = det
(

f1(z) f2(z)
f ′

1(z) f ′
2(z)

)
= f1(z)f ′

2(z) − f ′
1(z)f2(z) , (2.49)

where f1(z), f2(z) are the two linearly independent solutions of the equation.
Therefore, we can write

f ′′
1 (z) + p(z)f ′

1(z) + q(z)f1(z) = 0 ,

f ′′
2 (z) + p(z)f ′

2(z) + q(z)f2(z) = 0 .
(2.50)

By multiplying the second of Eqs. (2.50) by f1(z) and subtracting the first
equation multiplied by f2(z) we get

f1(z)f ′′
2 (z) − f ′′

1 (z)f2(z) + p(z)
[
f1(z)f ′

2(z) − f ′
1(z)f2(z)

]
= 0 , (2.51)

which can be rewritten by using the expression (2.49) as

W ′(z) + p(z)W (z) = 0 , (2.52)

where for simplicity we denote W [f1, f2](z) as only W (z) hereinafter. By
rearranging Eq. (2.52) into

W ′(z)
W (z) = −p(z) , (2.53)

and further integrating we arrive at the Liouville’s formula for the Wronskian
(see e.g., [9])

W (z) = W (z0) exp

−
z∫

z0

p(z̃) dz̃

 . (2.54)
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2. Mathematical methods ................................
2.4.3 Floquet theory

Assume a normalised solution of Eq. (2.47) satisfying the following initial
conditions

u(0) = 1 , v(0) = 0 ,

u′(0) = 0 , v′(0) = 1 .
(2.55)

Any solution of Eq. (2.47) can now be written as a linear combination of the
normalised solution u(z), v(z) as

f(z) = f(0)u(z) + f ′(0)v(z) . (2.56)

We are now looking for a solution satisfying the so-called Floquet condition
that can be written as (see e.g., [9])

F (z + d) = λF (z) , (2.57)

where λ is called the Floquet multiplicator and the function F (z) is then
called the Bloch wave. Due to the periodicity of the functions p(z), q(z) if
f(z) is a solution to Eq. (2.47) then f(z + d) is also a solution (see e.g., [9]).
Therefore, by employing the expression (2.56) we can write

u(z + d) = u(d)u(z) + u′(d)v(z) ,

v(z + d) = v(d)u(z) + v′(d)v(z) .
(2.58)

Now, let’s express the Bloch wave F (z) as

F (z) = C1u(z) + C2v(z) , (2.59)

where C1, C2 stand for the integration constants. By combining Eqs. (2.57),
(2.58) and (2.59) we get the following equation

C1[u(d)u(z) + u′(d)v(z)] + C2[v(d)u(z) + v′(d)v(z)] = λ[C1u(z) + C2v(z)] ,
(2.60)

which can be further rearranged as

[(u(d) − λ)C1 + v(d)C2]u(z) + [u′(d)C1 + (v′(d) − λ)C2]v(z) . (2.61)

But since the functions u(z), v(z) are linearly independent the following must
apply

(u(d) − λ)C1 + v(d)C2 = 0 ,

u′(d)C1 + (v′(d) − λ)C2 = 0 .
(2.62)

The system of equations (2.62) represents an eigenvalue problem

Ac = λc , (2.63)

where
A =

(
u(d) v(d)
u′(d) v′(d)

)
, c =

(
C1
C2

)
. (2.64)
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To ensure that Eq. (2.63) posseses a nontrivial solution it is required that

det(A − λI) = 0 , (2.65)

where I denotes the identity matrix, resulting in the following characteristic
equation

λ2 − [u(d) + v′(d)]λ + det(A) = 0 , (2.66)

which can be rewritten by employing Eq. (2.49) as

λ2 − [u(d) + v′(d)]λ + W [u, v](d) = 0 . (2.67)

According to Eq. (2.67) the following must apply for it’s roots λ1, λ2 (the
respective Floquet multiplicators):

λ1 + λ2 = u(d) + v′(d) ,

λ1λ2 = W [u, v](d) .
(2.68)

By epmploying the Liouville’s formula for the Wronskian (2.54) and focusing
on the Webster-type equation (2.38) for which

p(z) = η′(z)
η(z) , (2.69)

we get

W [u, v](d) = W [u, v](0) exp

−
d∫

0

η′(z)
η(z) dz

 = η(0)
η(d) , (2.70)

but since η(z) is now a periodic function with the period d, i.e.,

η(z + d) = η(z) , (2.71)

then according to Eq. (2.70)

W [u, v](d) = 1 (2.72)

and the whole problem simplifies to

λ2 − [u(d) + v′(d)]λ + 1 = 0 , (2.73)

where the Floquet multiplicators λ1, λ2 satisfy

λ1 + λ2 = u(d) + v′(d) ,

λ1λ2 = 1 .
(2.74)
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2.4.4 Bloch waves

In order to find the Bloch waves for the Webster-type equation (2.38) we first
express the roots of the characteristic equation (2.73) as

λ1,2 = h ±
√

h2 − 4
2 , (2.75)

where
h ≡ u(d) + v′(d) . (2.76)

Eqs. (2.75) now become linearly dependent, so without the loss of generality
we substitude the expression (2.76) into one of them (in this case the first
one), resulting in the following expression for the integration constants C1, C2

C1 = 1 , C2 = λ1,2 − u(d)
v(d) , (2.77)

(the choice C1 = 1 is arbitrary). Therefore, according to Eq. (2.59) the two
linearly independent Bloch waves in the first period can be written as

F1,2(z) = u(z) + λ1,2 − u(d)
v(d) v(z) . (2.78)

Now comes the principal part of the Floquet-Bloch theory. Up to this point,
we have expressed the Bloch waves based on the normalised solution (2.55).
The question now follows - how do we find the normalised solution to Eq.
(2.47) in the whole domain? The answer is simple - we don’t! On the contrary,
we only need to specify the normalised solution in the first period of the
respective domain, i.e., z ∈ ⟨0, d⟩. All that is required now is to extend the
corresponding Bloch waves to the rest of the domain by simply employing
the Floquet condition (2.57) as follows:

F
(ext)
1,2 (z) = λ

⌊z/d⌋
1,2 F1,2(z − ⌊z/d⌋d) , (2.79)

where F
(ext)
1,2 (z) denotes the Bloch wave extended to the whole domain and

the function ⌊x⌋ returns the nearest integer less than or equal to x.

To sum up, in order to find the general solution to Eq. (2.47) in terms
of the Bloch waves we only need to find the normalised solution in the first
period, use it to express the Bloch waves (again in the first period) according
to Eq. (2.77) and finally extend the Bloch waves to the rest of the domain by
simply employing the formula (2.79).

The Floquet-Bloch theory provides us with an extremely effective and
elegant method of how to express the solutions to the Webster-type equation
with periodic non-constant coefficients (η(z) and ζ(z)) in contrast to e.g., the
transfer matrix method (TMM, see e.g., [10]) which also provides an effective
method for solving wave related problems in (locally) periodic structures, but
to express the solutions in the whole domain can feel a bit cumbersome.
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2.5 Functionally graded materials

As the title suggests, the topic of this thesis is related to all sort of elastic
and acoustic inhomogeneous structures. Regarding the acoustic part it is
usually pretty straighforward to realize e.g., an acoustic waveguide (duct)
of continuously varying cross-sectional area or an uniform waveguide but
now with a nonuniform distribution of the mean flow velocity profile. But
it might not be immediately obvious how to realize an elastic material of
continuously varying density, Young modulus, shear modulus etc. On one
hand, most solids that can be find in nature (except for crystals, but those
are usually strongly anisotropic, which is beyond the scope of this work) are
typically inhomogeneous, the most obvious example can be the composition
of the Earth itself. But this type of inhomogeneity is a priori given by
the nature. Therefore, this section is devoted to the Functionally Graded
Materials (hereinafter referred to as FGM) which are artificial elastic materials
whose physical properties can be controlled by the manufacturing process.

First, since all of the papers included in Chapt. 3 deal with structures
that are inhomogeneous in only one spatial direction, we will make the same
assumption here. Hence, let’s start by assuming a FGM whose one or more
properties vary along (without the loss of generality) the z coordinate. The
mathematical way of how to describe such an inhomogeneity is by introducing
the corresponding material function η(z) (see Sec. 2.2) with the following
expression for the material property P :

P (z) = P0η(z) , (2.80)

where P (z) designates the value of the respective material property at point
z The conventional choice it that P0 represents the value at z = 0 implying
η(0) = 1. The situation is depicted in Fig. 2.1 for a FGM of the lenght ℓ.

Figure 2.1: Material function.

Now, let’s focus on the concept of how to design such a material (at least
in theory). We start with two distinct materials denoted as MI and MII with
the corresponding material properties PI ̸= PII. Assume now that the FGM is
composed by discrete layers of thickness δz and each of those layers consists
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2. Mathematical methods ................................
of two sublayers, one made of material MI with the respective thickness δz1 a
the second one of MII with the respective thickness δz2. The two thicknesses
then satisfy the following condition

δz1 + δz2 = δz . (2.81)

The n-th such layer corresponding to the point zn = nδz is depicted in Fig.
2.2 (the function V (zn) will be explained further in the text).

Figure 2.2: n-th layer of the FGM.

Now assume that we want to analyse the propagation of elastic waves (at
this point it is not necessary to specify the type of the waves) along the z
direction inside of such FGM material. If the thickness of the layer δz is
substantially smaller than the corresponding wavelength λ of the elastic wave

δz ≪ λ , (2.82)

we can approximate the material property of the n-th layer by the so called
rule of mixtures (see e.g., [11])

P (zn) ≈ δz1nPI + δz2nPII
δz

. (2.83)

It is now useful to define the volume fraction function (see e.g., [11]) V (zn)
for each layer as

V (zn) ≡ δz2n

δz
, (2.84)

which gives a percentage of the material MII inside of the n-th layer. Hence,
the following condition must hold

0 ≤ V (zn) ≤ 1 . (2.85)

Eq. (2.83) can now be rewritten as

P (zn) ≈ PI[1 − V (zn)] + PIIV (zn) , (2.86)
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where we used the condition (2.81). If we now assume that the thickness of
each layer is also substantially smaller than the overall length of the FGM

δz ≪ ℓ , (2.87)

we can treat the discrete position of each layer as an continuous variable

zn → z (2.88)

and therefore rewrite Eq. (2.86) as

P (z) = PI[1 − V (z)] + PIIV (z) , (2.89)

where the approximation symbol is omitted hereinafter. Eq. (2.89) now
describes any material property P as a continuously varying function of z.

At this point we might want to return to the definition of the material
function given by Eq. (2.80). For that purpose, we rearrange Eq. (2.89) to
the following form

P (z) = PI[1 + PV (z)] , (2.90)

where P ≡ (PII/PI − 1). By the comparison of Eqs. (2.80) and (2.90) we get
the following relation between the material function and the volume fraction
function

η(z) = 1 + PV (z) . (2.91)

Please note that as mentioned at the beginning of this section the typical
choice is that η(0) = 1. According to Eq. (2.91) this implies V (0) = 0
meaning that the beginning of the FGM is composed purely of the material
MI. But of course in general this does not have to be true and one can start
the FGM with any fractional composition of the two materials.

FGMs are a topic of a great scientific importance and this section covers
only a very simplified one-dimensional mathematical model for the purposes
of this thesis. For further information regarding the properties, fabrication,
analysis, application etc. of the FGMs the reader is referred to e.g., [12, 13].
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Chapter 3

Collection of publications

This is the main chapter of the thesis where six papers published by the
author are presented. Five of the mentioned papers are published in peer
reviewed journals indexed in Web of Science and one of them is a conference
paper. All the papers have one specific topic in common - they all deal with
the propagation of acoustic or elastic waves in inhomogeneous media of some
kind (in line with the topic of this dissertarion thesis), whereas the primary
approach is always to employ some analytical or approximate analytical
method. The purpose of the following text is to summarize the typical steps
involved in each one of the papers.

The first step is to formulate the problem with an appropriate model equa-
tion (or equations) that describe the propagation of the specific wave type in
the corresponding inhomogeneous structure. Note that this equation is usually
of the Webster-type, see Sec. 2.2, Eq. (2.38). The spatial inhomogeneity
of the structure is then typically described by the corresponding function
η(s). The second step is to employ a convenient mathematical method in
order to find a closed form exact or approximate analytical solution to the
respective equation. In the majority of the presented papers (4 out of 6) the
approach is to transform the model equation into the form of the canonical
Heun equation (2.14) or the triconfluent Heun equation (2.30) for which
we can write the exact analytical solution according to Sec. 2.1. This step
can be done either in special cases where the functions η(z), ζ(z) (see Sec.
2.2) are given by a specific spatial dependece allowing the transformation
or some form of an approximation technique can be employed to realize the
transformation. Another possibility is to use the WKB method (see Sec. 2.3),
which can also serve as a benchmark solution to the solutions expressed by
the (triconfluent) Heun functions in the case where the condition (2.44) is met.
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In the last presented paper a special technique involving the second order
approximation of the transfer matrix is used. Once the analytical solutions
(or other analytical expressions for the specific quantities of interest) are
formulated, the next steps then follows from the specific issue that is being
solved. Sometimes, the solutions themselves constitute the desired outcome,
while in other cases, certain boundary conditions are applied, leading to
the corresponding dispersion relation. Alternatively, a specific form of a
wave manipulation structure (such as a lens) may be constructed based on
the properties of the (approximate) analytical solution. Furthermore, the
transmission and reflection coefficients can be calculated, etc. Since all of
those papers are mostly theoretical, the typical last step involves some form
of a numerical solution/simulation in order to validate the correctness of the
proposed analytical approach.

A typical question for someone dealing with an exact/approximate analyti-
cal approach in order to solve the specific wave related problems can be: Why
do we need the analytical solutions when they are often given by complicated
expressions (except for the simplest textbook examples) and the numerical
methods nowadays provide the solution much more easily? To this it is possi-
ble to propose the following answer: The analytical approach can sometimes
be a bit more laborious to derive than using numerical methods, but the
closed form analytical expression of the desired solution can be extremely
useful in many scenarios. Let’s sum up some of the major advantages here.
First, an analytical solution provides us with much more information then the
numerical one and therefore enables deeper understanding of how do the waves
behave inside of the respective (inhomogeneous) structure. Second, with the
analytical solution, it is possible to perform various further mathematical
manipulations and thereby obtain additional quantities characterizing the
behavior of the investigated waves. The exact analytical solutions can also
serve as benchmark solutions for the numerical schemes. Moreover, in specific
situations, the analytical solutions can be more advantageous for several types
of optimization procedures.

Let’s demonstrate this with the following example. Assume that we want to
analyze the wave propagation inside of an inhomogeneous structure described
by the corresponding function η controlled by the parameter p. That means
the material function depends simultaneously on the coordinate z and also
on p, which we can write as

η = η(p; z) . (3.1)

Now, we want to assess how we can control the wave propagation inside
of such inhomogeneous structure by varying this parameter. The typical
numerical approach will then be to solve the model equation again and again
for various values of the parameter p. In contrast, once the exact/approximate
analytical solution is expressed including the dependence on the parameter p
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as
f = f(p; z) (3.2)

there is no need to solve the model equation again. On the contrary, we
can now perform various types of further analytical manipulations, such as
employing different types of boundary conditions in order to determine the
corresponding dispersion relation or to express the analytical formulas for
the transmission and reflection coefficient for the corresponding structure.
Further, in case we can assume a locally periodic structure by repeating the
original inhomogeneous one several times, we can directly extend the solution
to the whole system by simply employing the Floquet-Bloch theory (see Sec.
2.4, Eq. (2.79)). The next possibility could be to separate the analytical
solution by using the wave-splitting method to the two parts travelling in
the opposing directions to understand what happens inside of the respective
inhomogeneous structure, etc. Of course that all of this could potentially
somehow be achieved numerically. But it is much easier, convenient and
elegant to work with analytical expressions that most types of computer
algebraic systems (CAS) such as Maple and Mathematica can easily process
and evaluate. Furthermore, it should be emphasised that when working with
the numerical solutions there is always a risk that the solution is incorrect
even though at first glance it might seem physically reasonable. Or that
the numerics diverges with e.g., just a slight deviation of the initial settings
that originally provided a correct solution. Basically, the numerical solutions
cannot be blindly trusted and should always be treated carefully.

In conclusion, there is certainly no intention to belittle the importance
of numerical methods. On the contrary, the aim is solely to emphasize the
advantages of having the analytical solutions, as they can potentially offer
overall better insight into the studied problems and are typically much more
convenient and enjoyable to work with.
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3.1 Paper I

Title: Surface Love-type waves propagating through viscoelastic functionally
graded media

The first paper published in The Journal of the Acoustical Society of America
deals with the propagation of the so called Love-type waves, which are surface
shear horizontal (SH) elastic waves propagating inside of a generally inho-
mogeneous elastic surface layer of finite thickness laid over a homogeneous
substrate extended up to infinity. The term SH means that the particles
oscillate perpendicularly to the direction of propagation and in the plane
paralell to the surface. The Love-type waves are often characterised as a form
of guided waves, whereas the surface layer then represents the corresponding
waveguide structure. The energy is then concentrated at the surface (therefore
the term surface wave) and decreasing exponentially inside of the substrate
towards the infinite depth. In this paper we assume a surface layer consisting
of a FGM (see Sec. 2.5) that is inhomogeneous along the thickness direction,
whereas the continuously varying parameters whose profile is given by the
respective material function (2.80) are the density and the shear modulus.
First, the model equation in the form of the Webster-type equation (2.38) is
derived including the viscoelastic losses. It is then shown that this equation
can be transformed into the form of the triconfluent Heun equation (see Sec.
2.1) in the special case where the material function itself is expressed as a
combination of the triconfluent Heun functions that can be controlled by
up to eight distribution parameters. Therefore, we are able to express the
general closed form exact analytical solution to the model equation also as a
combination of the triconfluent Heun functions for a completely new class
of material function profiles, which greatly extends the set of other material
function profiles for which the exact analytical solutions are known. Based on
the specific boundary conditions and by using the found analytical solution
the corresponding dispersion equation is then expressed.

In the next part of the paper we demonstrate the applicability of the
theory presented above onto the specific examples. First, we show that the
viscoelastic losses of the substrate have a negligible effect on the real part
of the dirpersion curves (in the case of the homogeneous surface layer) and
therefore we neglect them in the further calculations. Next, the dispersion
curves (in this case the dependence of the phase velocity of the Love-type
waves on the dimensionless wavenumber) corresponding to the first three
modes of the solution (Love modes) are plotted for the two selected profiles
of the material function realized by the two specific sets of the distribution
parameters defined above. Then, for selected values of the dimensionless
wavenumber the corrresponding solutions of the model equation are plotted
together with the results obtained via the standardly used numerical method
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Runge-Kutta-Fehlberg 45 (RKF45) in order to validate their corectness.
For comparison, the approximate analytical WKB solutions (see Sec. 2.3)
are also displayed, showing that (as expected) the WKB solution does not
provide correct results in the case of relatively low values of the dimensionless
wavenumber where the condition (2.44) is not met.

Finally, a case study is conducted for the gaussian-like profile of the
material function where we assess the effect of the height of the gaussian on
the corresponding dispersion curves with the following result - the bigger
the height of the gaussian the wider the gap between the two dispersion
curves corresponding to the first and the second Love mode. This effect is
very interesting and can be possibly utilized in various types of practical
applications where we require only the first Love mode to propagate. One
of the possible continuation of this research could be the study of how does
the boundary condition at the surface (which is assumed traction free in
this paper) affects the corresponding dispersion curves for various profiles of
the material function. In practice, this means that we assume a presence of
another material at the top of the layer (e.g., some type of liquid). The other
possibility is to extend the found analytical solution to a locally periodic
structure consisting of N such inhomogeneous layers laid over each other,
whereas this is the topic of the Paper II.
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ABSTRACT:
This paper deals with the solution of the model equations, which describes the propagation of the surface Love-type

waves in a waveguide structure consisting of a lossy isotropic inhomogeneous layer placed on a viscoelastic homo-

geneous substrate. The paper points to the possibility of using the triconfluent Heun differential equation to solve the

model equation. The exact analytical solution within the inhomogeneous layer is expressed by the triconfluent Heun

functions. The exact solutions are general in the sense that only the internal parameters of the triconfluent Heun func-

tions can change the spatial dependencies of the material parameters in the inhomogeneous layer’s thickness direc-

tion. Based on the comparison, the limits of the WKB method applicability are discussed. It is further demonstrated

that substrate losses affect the dispersion characteristics only to a small extent. Using examples in which the surface

layer is represented by functionally graded materials, it was shown that the distance between the modes can be influ-

enced through those materials. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0006964
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I. INTRODUCTION

The propagation of the shear surface elastic waves of

Love type (hereinafter only referred to as Love waves) in

functionally graded materials is an issue of considerable sci-

entific and practical interest. We can encounter the use of

Love waves in many areas, especially in sensor technology,

seismology, geophysics, nondestructive testing of materials,

seismic engineering, and geotechnical engineering. A very

well-organized overview devoted to Love waves and their

use is published in Ref. 1 (Chap. 2). To understand the

behavior of Love waves, which propagate through an inho-

mogeneous layer, it is important to have the exact analytical

solutions of the corresponding model equations at our dis-

posal. The model equation describing the propagation of the

time-harmonic SH (shear horizontal) Love waves in an

inhomogeneous layer can be reduced to an ordinary second-

order differential equation with variable coefficients repre-

senting a general Sturm-Liouville equation. Thus, finding a

solution to the model equation for the given boundary condi-

tions leads to a Sturm-Liouville problem. Although the

Sturm-Liouville theory is well developed for a general

Sturm-Liouville equation with variable coefficients, the

practical solutions of the problems (see, e.g., Ref. 2) are

only studied on equations with constant coefficients (con-

stant material parameters) in layered media (see, e.g.,

Ref. 3) or only for variable coefficients given by elementary

mathematical functions (linear, exponential, sinusoidal func-

tion, etc.). This is the reason why the model equations’ exact

analytical solutions have, so far, been published only for

simple material functions expressing the spatial dependen-

cies of the material parameters in the thickness direction; see,

e.g., Refs. 4–7) However, if it is necessary to consider the

more complex profiles of the material functions, then, usu-

ally, the solution of the Sturm-Liouville problem relies on an

appropriate numerical method (e.g., the transfer matrix

method, the finite difference method), the use of some

approximate analytical method, such as the Wentzel-

Kramers-Brillouin (WKB) method (see, e.g., Refs. 8 and 9),

the series expansion method (see, e.g., Ref. 10), or the

Green’s function approach method (see, e.g., Refs. 11–13).

It is, therefore, desirable to seek a solution to the

Sturm-Liouville problem for other material function profiles

that come into consideration. The exact solution of the

model equation for the functionally graded and lossy materi-

als allows us to assess the influence of the losses and

selected profiles of the material functions on the Love

waves’ propagation characteristics. So far, comparably very

few published works have addressed the issue of propagat-

ing surface elastic waves through lossy media, and it is pos-

sible to refer to some of them, e.g., Refs. 14–22.

Specifically, in this paper, we focus on the description

of the propagation of elastic Love waves in an inhomoge-

neous isotropic surface layer in which the spatial depen-

dence of the density and shear modulus in the thickness

direction is considered. Our main motivation is to present a

method to solve the corresponding model equations for the

inhomogeneous viscoelastic surface layer exactly, where the

spatial dependence of the material parameters involved can

be designed over a relatively wide range. Using a suitable

transformation, we can convert the model equation into the

form of the triconfluent Heun differential equation (THE)

for which the exact analytical solutions, called the
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triconfluent Heun functions, are known (see, e.g., Refs. 23

and 24). The evaluation of the triconfluent Heun functions

is already a standard part of the mathematical software such

as Maple (Maplesoft, Waterloo, Canada) or Mathematica

(Wolfram, Witney, United Kingdom). The material function

itself can be expressed as a linear combination of the tricon-

fluent Heun functions. Employing this approach, it is then

possible to find the exact analytical solution of the model

equation for various material function profiles. The exact

solutions may involve losses that occur in both the inhomo-

geneous layer and the substrate. Although in this paper we

only deal with isotropic materials, there are some works

dedicated to ortotropic and anisotropic materials; see, e.g.,

Refs. 25–28.

This paper is organized as follows. An outline of the

model equation’s derivation describing the propagation of

Love waves in a viscoelastic surface layer is given in Sec.

II. Section III is devoted to finding the exact analytical solu-

tion of the model equation for the inhomogeneous viscoelas-

tic layer. The expression of the material function using the

triconfluent Heun functions is shown in Sec. IV. The possi-

bility to describe the material functions, using the finite pol-

ynomials, is presented in Sec. V. The determination of the

dispersion equation is shown in Sec. VI. The presented ana-

lytical solutions’ applicability is demonstrated on the two

specifically chosen examples of the inhomogeneous surface

layer in Sec. VII, and the results based on the exact, approxi-

mate, and numerical solutions are discussed and compared.

Finally, Sec. VIII provides our conclusions and discussion.

To make this paper sufficiently self-contained, some fea-

tures concerning the THE and its polynomial solution are

outlined in Appendixes A and B.

II. MODEL EQUATIONS

The geometry of the waveguide structure and correspond-

ing coordinate system are illustrated in Fig. 1. The materials

used for the waveguide are considered to be isotropic, and the

surface layer (coating) with a thickness H is inhomogeneous

in the thickness direction and has an infinite extent in the xy-

plane. The half-space (substrate) is homogeneous. Without

loss of generality, we assume a time-harmonic elastic SH sur-

face Love wave propagating along the x direction. Assuming

the mechanical displacement vector ½0; u1ðx; z; tÞ; 0�, we can

write the stress equation of motion for the inhomogeneous

layer (see, e.g., Refs. 4 and 7) as

@rð1Þy;x

@x
þ @r

ð1Þ
y;z

@z
¼ qðzÞ @

2u1

@t2
; (1)

where qðzÞ is the mass density function, and the shear stress

components are given as

rð1Þy;x ¼ l̂ðzÞ @u1ðx; z; tÞ
@x

; rð1Þy;z ¼ l̂ðzÞ @u1ðx; z; tÞ
@z

: (2)

Considering the Kelvin-Voigt model of the viscoelastic

medium, we can express the position-dependent shear mod-

ulus l̂ðzÞ (see, e.g., Refs. 4, 14, and 29) as

l̂ðzÞ ¼ lðzÞ þ l0ðzÞ @
@t
; (3)

where lðzÞ is the position-dependent storage shear modulus

and l0ðzÞ represents the viscosity.

If we consider the spatial distribution of the material

parameters (see, e.g., Refs. 7, 29, and 30),

l̂ðzÞ ¼ l̂1gðzÞ; qðzÞ ¼ q1gðzÞ; (4)

where gðzÞ denotes the material function, then after substitu-

tion of the shear-viscosity stress components [Eq. (2)] into

Eq. (1), we arrive at the following form of the governing

elastodynamic equation:

@2u1ðx; z; tÞ
@x2

þ @
2u1ðx; z; tÞ
@z2

þ 1

l̂ðzÞ
dl̂ðzÞ

dz

@u1ðx; z; tÞ
@z

¼ 1

ĉ2
1

@2u1ðx; z; tÞ
@t2

; (5)

where ĉ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l̂1=q1

p
.

For the homogeneous substrate, we obtain the govern-

ing equation in a similar way with the difference that both

the shear modulus and mass density are constant, thus,

@2u2ðx; z; tÞ
@x2

þ @
2u2ðx; z; tÞ
@z2

¼ 1

ĉ2
2

@2u2ðx; z; tÞ
@t2

; (6)

where ĉ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l̂2=q2

p
.

The solutions of Eqs. (5) and (6) can be assumed to pos-

sess, respectively, the following forms:

~u1ðx; z; tÞ ¼ û1ðzÞ exp ik x� ĉtð Þ½ �; (7)

~u2ðx; z; tÞ ¼ û2ðzÞ exp ik x� ĉtð Þ½ �; (8)

where k is the wavenumber, ĉ is the complex phase velocity,

and i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. By introducing the

dimensionless variables,

FIG. 1. (Color online) The geometry of the Love waveguide structure (an

isotropic inhomogeneous surface layer over an isotropic homogeneous half-

space).
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s ¼ z

‘
; Û1;2 ¼

û1;2

‘
; K ¼ k‘; K̂1;2 ¼

x‘
ĉ1;2

; (9)

where ‘ is a characteristic length and x is the angular fre-

quency, and substituting Eqs. (7) and (8) into the corre-

sponding Eqs. (5) and (6), we obtain the equations in their

dimensionless forms,

d

ds
gðsÞ dÛ1ðsÞ

ds

� �
þ gðsÞ K̂

2

1 � K2

� �
Û1ðsÞ ¼ 0; (10)

d2Û2ðsÞ
ds2

þ K̂
2

2 � K2

� �
Û2ðsÞ ¼ 0; (11)

where Eq. (10) is expressed in the Sturm-Liouville form.

The complex shear modulus l̂1;2, which is vertically

distributed according to the material function g(s), can then

be expressed as

l̂1;2 ¼ l1;2 � i
Kĉl01;2
‘

: (12)

III. EXACT ANALYTICAL SOLUTION OF THE
GOVERNING EQUATIONS

The exact analytical general solution of Eq. (11) is

Û2ðsÞ ¼A2 exp �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂

2

2�K2

q
s

� �
þB2 exp i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂

2

2�K2

q
s

� �
;

(13)

where A2 and B2 represent the integration constants.

To solve the equation for the inhomogeneous layer [Eq.

(10)], the method published in Ref. 31 can be used. The

solution of Eq. (10) can be reduced to a time-independent

Schr€odinger-like differential equation,

d2wðsÞ
ds2

þ GðsÞ þ K̂2
� �

wðsÞ ¼ 0; (14)

where the function GðsÞ is defined below and

K̂2 ¼ K̂
2

1 � K2: (15)

Using the following transformation,

wðsÞ ¼ /ðsÞÛ1ðsÞ; (16)

it is possible to map Eq. (14) into Eq. (10).

Substituting the transformation relation (16) into Eq.

(14), we obtain

d2Û1

ds2
þ 2

/
d/
ds

dÛ1

ds
þ Û1

/
d2/
ds2
þ GðsÞ þ K̂2
� �

Û1 ¼ 0: (17)

By identifying this equation with Eq. (10), we get the fol-

lowing conditions on the transformation:

/ðsÞ ¼
ffiffiffiffiffiffiffiffi
gðsÞ

p
; (18)

d2/
ds2
þ GðsÞ/ðsÞ ¼ 0: (19)

Thus, searching for the general solution of Eq. (10) is

reduced to finding the general solution of the time-

independent Schr€odinger-like differential equation (14). We

can see from Eqs. (18) and (19) that the function GðsÞ deter-

mines the material function g(s). If we were able to solve

Eq. (14) for a given function GðsÞ, then using the transfor-

mation relation (16), we could solve Eq. (10).

In this work, we assume that the function GðsÞ is a quar-

tic polynomial, which enables us to solve Eq. (19) exactly

and, in addition, this function contains a sufficient number

of coefficients that allow us to determine an appropriate

material function profile. Hence, the function can be

expressed as

GðsÞ ¼ a0 þ a1ðs� s0Þ þ 2a2ðs� s0Þ2

þ a3ðs� s0Þ3 � a4ðs� s0Þ4; a4 6¼ 0: (20)

Substituting this expression into Eq. (14), we obtain the fol-

lowing equation:

d2wðsÞ
ds2

þ K̂2 þ a0 þ a1ðs� s0Þ þ 2a2ðs� s0Þ2
h

þa3ðs� s0Þ3 � a4ðs� s0Þ4
i
wðsÞ ¼ 0; (21)

which represents the THE. Using the change of variable

s! n as

s� s0 ¼ qnþ a3

4a4

; where q ¼ 3

2
ffiffiffiffiffi
a4
p

� �1=3

; (22)

it is possible to normalize Eq. (21) to the representative

form of the THE [see Eq. (A2)],

d2wðnÞ
dn2

þ A0ðK̂Þ þ A1nþ A2n
2 � 9

4
n4

� �
wðnÞ ¼ 0: (23)

Here,

A0ðK̂Þ¼
q2 3a4

3þ32a2a2
3a4þ64a1a3a2

4þ256ða0þK̂2Þa3
4

� �
256a3

4

;

A1¼
q3ða3

3þ8a2a3a4þ8a1a2
4Þ

8a2
4

; A2¼
q4ð3a2

3þ16a2a4Þ
8a4

:

(24)

Based on the transformation,

wðnÞ ¼ exp � n3

2
þ A2

3
n

� �
uðnÞ; (25)

we obtain the THE in its canonical form,

d2u

dn2
� ð3n2 þ cÞ du

dn
þ aðK̂Þ þ ðb� 3Þn½ �uðnÞ ¼ 0; (26)
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where

aðK̂Þ ¼ A0ðK̂Þ þ
A2

2

9
; b ¼ A1; c ¼ � 2

3
A2: (27)

Employing Eq. (A12), we can write the general solution of

Eq. (26) as

uðnÞ ¼ A1 THF aðK̂Þ;b; c;nð Þ

þB1 exp n3þ cn
	 


THF aðK̂Þ;�b; c;�nð Þ; (28)

where A1 and B1 are integration constants and THF stands

for the triconfluent Heun function.

Using Eqs. (22), (25), and (28), we can write the general

solution of Eq. (21) in the following form:

wðsÞ ¼ A1 exp �
Q3 s� a3

4a4

� s0

� �3

þ cQ s� a3

4a4

� s0

� �
2

2
64

3
75

THF aðK̂Þ; b; c; Q s� a3

4a4

� s0

� �� �

þB1 exp

Q3 s� a3

4a4

� s0

� �3

þ cQ s� a3

4a4

� s0

� �
2

2
64

3
75

THF aðK̂Þ;�b; c;�Q s� a3

4a4

� s0

� �� �
; (29)

where Q¼ 1/q.

Employing the transformation relation [Eq. (16)] and the solution [Eq. (29)], it is possible to write the general closed-

form solution of Eq. (10) as

Û1ðsÞ ¼ A1

exp �Q3

2
s� a3

4a4

� s0

� �3

� c
Q

2
s� a3

4a4

� s0

� �" #
ffiffiffiffiffiffiffiffi
gðsÞ

p THF aðK̂Þ; b; c; Q s� a3

4a4

� s0

� �� �

þB1

exp
Q3

2
s� a3

4a4

� s0

� �3

þ c
Q

2
s� a3

4a4

� s0

� �" #
ffiffiffiffiffiffiffiffi
gðsÞ

p THF aðK̂Þ;�b; c;�Q s� a3

4a4

� s0

� �� �

¼ A1ffiffiffiffiffiffiffiffi
gðsÞ

p U1 aðK̂Þ; b; c; s½ � þ B1ffiffiffiffiffiffiffiffi
gðsÞ

p U2 aðK̂Þ; b; c; s½ �: (30)

IV. MATERIAL FUNCTIONS BASED ON THE THFS

It is clear from Eqs. (18) and (19) that the function GðsÞ,
represented by a quartic polynomial [Eq. (20)] determines

the profile of the material function g(s). For this reason, we

refer to the function GðsÞ as the generating function.

Because Eq. (19) has the same form as Eq. (14), its general

solution is given by Eq. (30), where K̂ ¼ 0. As the parame-

ters a(0), b, and c depend on the constants of the quartic

polynomial a0, a1, a2, a3, a4, s0, we can write the material

function according to Eq. (18) as

gðsÞ ¼ ½C1U1ða0; a1; a2; a3; a4; s0; sÞ
þ C2U2ða0; a1; a2; a3; a4; s0; sÞ�2; (31)

and the integration constants C1 and C2 are optional.

Thus, we have eight optional distribution parameters

fa0; a1; a2; a3; a4; s0; C1; C2g, and the combination of which

the material function can be adjusted. This fact enables us to

find a wide class of material functions of various profiles for

which we have one general solution of Eq. (10) by substitut-

ing Eq. (31) for g(s) into the general solution [Eq. (30)].

To ensure that the shear modulus at the point s¼ 0 cor-

responds to the value l̂1, we choose values of the integration

constants C1;2 in such a way that the material function

g(0)¼ 1. In the case when the specific value of the material

function g(s) at another point si 2 ð0; sH� is required, where

sH ¼ H=‘ is a dimensionless thickness of the inhomoge-

neous layer, we can change one of the optional distribution

parameters and fix the remaining distribution parameters

until the material function reaches the required value at the

given point si.

It is worth noting that if the argument of the THFs is equal

to zero, then these functions equal unity for any values of the

parameters a, b, and c. Additionally, the first derivative of the

THFs are always equal to zero if their arguments are zero.

Examples of the material function profiles for various

optional distribution parameters are shown in Fig. 2 (the

THFs are evaluated with the mathematical software Maple,

version 17).
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V. MATERIAL FUNCTIONS BASED ON POLYNOMIAL
SOLUTIONS

As it is relatively difficult to estimate the profiles of the

THFs based on their parameters, it is convenient to express

a solution of Eq. (19) using finite polynomials if certain con-

ditions are satisfied.

Based on the theorem presented in Appendix B, where

the meaning of the used symbols below is also given, it is

possible to write the first three polynomials:

(1) For N¼ 0 (b¼ 3), we can directly find that D1 � a ¼ 0

and P0¼ p0 and the triconfluent function is equal to

unity, i.e.,

THFð0; 3; c; nÞ ¼ 1; (32)

(2) For N¼ 1 (b¼ 6), D2 � a2 þ 3c ¼ 0,

P1ðnÞ ¼ n� a
3

;

(3) For N¼ 2 (b¼ 9), D3 � a3 þ 12acþ 36 ¼ 0,

P2ðnÞ ¼ n2 � a
3
nþ a2

36
� 1

a
:

It should be noted that the polynomial solutions for

N � 1 do not represent the THFs according to the com-

monly used definition because they do not satisfy the condi-

tion b1 ¼ 0, as it is supposed in Eq. (A9). The polynomial

solutions of Eq. (19) for N � 1 may be expressed as linear

combinations of the two standard solutions [Eq. (31)]. For N
> 3, we can continue in finding the couples (a,c) that enable

us to express the THFs in their polynomial form as higher

order polynomials are no longer suitable in the sense of the

estimation of their profiles.

Using the first two polynomial solutions above, we obtain

the following expressions for the material function g(s):

(1) N¼ 0,

gðsÞ ¼ C1 exp � 3

2
Q3s

s2

3
� s0sþ s2

0 �
a2

a4

� �� �
: (33)

(2) N¼ 1,

gðsÞ ¼ C1 exp � 3

2
Q3s

s2

3
� s0sþ s2

0 �
a2

a4

� �� �

� Qðs� s0Þ �
a
3

� �2

: (34)

It is necessary to note that it is not possible to express

the second independent solution in the polynomial form for

the same optional parameters (C2 ¼ 0).32 The material func-

tions based on the first two polynomial solutions enable us

to calculate the corresponding optional parameters analyti-

cally; some results are shown in Fig. 3.

VI. DETERMINATION OF INTEGRATION CONSTANTS
AND DISPERSION RELATIONS

To demonstrate the applicability of the general results

presented in Secs. III–V, we use the following boundary

conditions:

(1) The surface of the structure is traction-free, i.e., the

transverse shear stress is equal to zero, resulting in the

following condition:

dÛ1

ds


s¼0

¼ 0: (35)

(2) The displacement vector and its first derivative must be

continuous throughout the interval ½0;1Þ, therefore, the

following equations must hold:

FIG. 2. (Color online) Examples of the material function profiles g(s) for a

given sequence of optional parameters fC1; C2; a0; a1; a2; a3; a4; s0g.
{1,0,1,�1.5,1,0,7,0}, red line; {1,0,1.04,1,1,0,1,0}, black line; {1,0,1,1,

0,0,9,0}, blue line; and {0,1,�5,�3,3,0,3,0}, brown line are shown.

FIG. 3. (Color online) Examples of the material function profiles for the

polynomial solutions for a given sequence of parameters fC1;N; a0; a1; a2;
a3; a4; s0g. {1,0,�1,10,5,0,25,0}, red line; {1,0,0,20,0,1,0}, black line;

{0.68,1,�0.5,1.5,0.52,0,0.14,0}, blue line; and {0.56,1,�0.2,0.1,0.02,

0,0.001,0}, brown line are shown.
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Û1ðsHÞ ¼ Û2ðsHÞ; (36)

l̂ðsHÞ
dÛ1

ds


s¼sH

¼ l̂2

dÛ2

ds


s¼sH

; (37)

where sH ¼ H=‘.
(3) The regularity condition at infinity,

lim
s!1

Û2ðsÞ ¼ 0: (38)

From the last condition [Eq. (38)], we immediately get

that B2 ¼ 0 and, therefore, we are left with three remaining

equations for the three integration constants A1; B1, and A2.

These equations form a linear system that has a nontrivial

solution if the corresponding determinant is zero, which

results in the following implicit form of the complex disper-

sion relation:

FðK̂Þ ¼ � l̂2

gðsHÞl̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂

2

1 � K̂
2

2 � K̂2

q
; (39)

where

FðK̂Þ � W01ðK̂; 0ÞW02ðK̂; sHÞ �W01ðK̂; sHÞW02ðK̂; 0Þ
W01ðK̂; 0ÞW2ðK̂; sHÞ �W1ðK̂; sHÞW02ðK̂; 0Þ : (40)

Here,

WiðK̂; sÞ � Ui aðK̂Þ; b; c; s½ �ffiffiffiffiffiffiffiffi
gðsÞ

p : (41)

By solving Eq. (39), we obtain the resulting dispersion rela-

tion in the form

ĉðKÞ ¼ c1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2

1H2 K2 þ K̂2ðKÞ
� �

� c2
1l
02
1 K2 þ K̂2ðKÞ
� �2q

� ic1l01 K2 þ K̂2ðKÞ
� �

l1KH
; (42)

where c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l1=q1

p
. The dependence K̂ðKÞ can then be cal-

culated from Eqs. (15) and (39). As will be seen in Sec. VII,

for a given dimensionless wavenumber K, there could exist

more solutions of Eq. (42), which define the various Love

modes. Using the dispersion relation and boundary condi-

tions [Eqs. (35)–(38)], we can determine the resulting wave

solutions of Eq. (10), called the THF solutions, which

describe the Love waves.

Using the standard WKB method (see, e.g., Refs. 8 and

33), we can obtain the approximate analytical solution of

Eq. (10),

Û
ðWKBÞ
1 ðsÞ ¼ A1ffiffiffiffiffiffiffiffi

gðsÞ
p eiK̂s þ B1ffiffiffiffiffiffiffiffi

gðsÞ
p e�iK̂s; (43)

where A1 and B1 are the integration constants.

Based on the WKB solution, we can calculate the dis-

persion relation from the same formula as in the case of the

THF solution, i.e., Eqs. (39)–(42), where we use the follow-

ing substitutions: Û1ðsÞ ! Û
ðWKBÞ
1 ðsÞ; U1ðsÞ ! exp ðjK̂sÞ,

and U2ðsÞ ! exp ð�jK̂sÞ.
It can be seen that if we set the material function g¼ 1,

then the WKB solution takes on the form of the standard

solution for a homogeneous surface layer.

VII. RESULTS AND DISCUSSION

For the purpose of the numerical simulations, we bor-

row the following material parameters from Ref. 14.

FIG. 4. (Color online) The dispersion curves for various values of l02. l02 ¼ 0, solid line; l02 ¼ 25l01, dotted line; and l02 ¼ 100l01, dashed line are shown.

(Left) The real part of the dimensionless complex phase velocity and (right) imaginary part of the dimensionless complex phase velocity are shown.
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The viscoelastic inhomogeneous layer,

l1 ¼ 1:43� 109 N m�2; q1 ¼ 1180 kg m�3;

l01 ¼ 0:37 Pa s; H ¼ 239 lm: (44)

The homogeneous substrate,

l2 ¼ 5:4� 1010 N m�2; q2 ¼ 2200 kg m�3: (45)

The validity of the exact analytical solution [Eq. (30)] is ver-

ified using the numerical method RKF 45 (Runge-Kutta-

Fehlberg; see, e.g., Ref. 34).

Assuming that both the surface layer and substrate are

homogeneous, the dispersion curves’ dependencies are plot-

ted for the first three Love modes for various substrate vis-

cosity parameter values l02; see Fig. 4.

It turns out that the substrate viscosity parameters from the

assumed range l02 2 ½0; 100l01� have an only negligible effect

on the dispersion curves of the real part of the dispersion rela-

tion (graphically indistinguishable for the given range of

parameters l02) and, therefore, the curves only for l02 ¼ 0 are

plotted; see Fig. 4(a). As for the imaginary part, the substrate

attenuation’s effect decreases with increasing values of the

dimensionless wavenumber K; see Fig. 4(b). We can observe

here that for increasing values of the dimensionless wavenum-

ber, the curves of the individual modes for different values of

the substrate viscosity parameter gradually approach each other.

This finding means that it is reasonable for the WKB method to

ignore the substrate’s viscoelastic character because the accu-

racy of this method increases with increasing K. Hereafter, we

will not consider the effect of the substrate attenuation (l02 ¼ 0)

for all of the subsequent calculations. A similar case was inves-

tigated in Ref. 17, where a lossless homogeneous substrate and

lossy homogeneous layer were assumed.

Based on the following values of the distribution

parameters,

s0 ¼ 0; a0 ¼ �3:00; a1 ¼ �0:07; a2 ¼ 4:81;

a3 ¼ 0; a4 ¼ 3:00; C1 ¼ C2 ¼ 0:5; (46)

we obtain the transient profile of the material function

shown in Fig. 5. The real and imaginary parts of the disper-

sion curves for the first three Love modes are plotted in

Figs. 6(a) and 6(b).

Figures 7–9 show the first three Love modes calculated

based on the exact solution. These modes are compared with

the results obtained using the WKB method and numerical

solutions for three different values of a dimensionless wave-

number K.

We can see that with increasing values of the dimen-

sionless wave number K, the accuracy of the WKB method

solutions improves, which is consistent with the assump-

tions of the WKB approximation. We can also observe that

the WKB solutions are refined in the case of the higher

modes. The corresponding numerical solutions clearly show

that the THF solutions are correct in all of the cases.

The following considered barrier-type material function

is expressed using the polynomial solution of the THE [see

Eq. (34)] to which these distribution parameters correspond,

s0 ¼ 0; a0 ¼ �1:29; a1 ¼ 6:00; a2 ¼ 3:33;

a3 ¼ 0; a4 ¼ 2:25; C1 ¼ 0:67: (47)

FIG. 5. (Color online) The transient profile of the material function.

FIG. 6. (Color online) The dispersion curves for the first three Love modes. (Left) The real part of the dimensionless complex phase velocity and (right)

imaginary part of the dimensionless complex phase velocity are shown.
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The resulting material function profile is shown in Fig. 10. The

real and imaginary parts of the dispersion curves belonging to

this profile can be seen in Figs. 11(a) and 11(b).

The first three Love modes calculated via the exact ana-

lytical solution are plotted in Figs. 12–14, where they are

compared with the modes calculated on the basis of the

WKB and numerical solutions. Again, we can see that with

increasing values of the dimensionless wavenumber K, the

accuracy of the approximate WKB solutions increases.

By comparing Figs. 6(a) and 11(a), it can be seen that

in the case of the barrier-type material function profile, the

cut-on wavenumber of the second mode (here, represents

the wave number from which the second mode begins to

propagate) is larger than that of the transient profile. Figure

15(b) compares the dependencies of the phase velocities

corresponding to the first three modes on the dimensionless

wavenumber for the case of the constant material function

and the material function having the barrier character that is

shown in Fig. 15(a), which is given by the following distri-

bution parameters (in this case, we assumed the surface

layer to be lossless):

s0 ¼ 0; a0 ¼ �29:61; a1 ¼ 263:32;

a2 ¼ �362:21; a3 ¼ 922:22; a4 ¼ 461:11;

C1 ¼ C2 ¼ 1:07: (48)

It can be seen from Fig. 15(b) that the dispersion relation

can be influenced by a suitable choice of the material func-

tion profile g(s). The cut-on wavenumber of the second mode

was increased by D1 � 37% for the lower barrier-like profile

(dashed line) and D2 � 53% for the higher barrier-like profile

(solid line). For the higher modes, we can observe this phe-

nomenon to a lesser extent. We can observe that the height of

the barrier profile shifts the position of the cut-on

FIG. 7. (Color online) A comparison of the first Love mode obtained by

means of the THF solution, WKB solution, and numerical solution for various

values of the dimensionless wavenumber K. The THF solutions, solid lines;

WKB solutions, dashed lines; and numerical solutions, circles, are shown.

FIG. 8. (Color online) A comparison of the second Love mode obtained by

means of the THF solution, WKB solution, and numerical solution for various

values of the dimensionless wavenumber K. The THF solutions, solid lines;

WKB solutions, dashed lines; and numerical solutions, circles, are shown.

FIG. 9. (Color online) A comparison of the third Love mode obtained by

means of the THF solution, WKB solution, and numerical solution for various

values of the dimensionless wavenumber K. The THF solutions, solid lines;

WKB solutions, dashed lines; and numerical solutions, circles, are shown.

FIG. 10. (Color online) The barrier-type profile of the material function.
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wavenumbers of the higher modes. This means that by choos-

ing a suitable material function profile, the frequency range

for which only the first mode can be excited may be varied,

which is particularly applicable in sensor technology using

Love waves. The exact solutions we have found allow us to

vary the profile of the material functions in a wide range and,

thus, to investigate the influence of the profile shape for this

purpose, preferably using some suitable optimization method,

but this research is already beyond the scope of this paper.

VIII. CONCLUSIONS

In this work, we focused on finding the exact analytical

solution of the model equation describing the propagation of

Love waves in a viscoelastic inhomogeneous isotropic layer

of constant width determined by the position-dependent

complex shear modulus and material density. The spatial

distribution of these material parameters is described using

the same material function. We have shown that the model

equation’s solution can be reduced to the issue of solving

FIG. 11. (Color online) The dispersion curves for the first three Love modes. (Left) The real part of the dimensionless complex phase velocity and (right)

imaginary part of the dimensionless complex phase velocity are shown.

FIG. 12. (Color online) A comparison of the first Love mode obtained by

means of the THF solution, WKB solution, and numerical solution for various

values of the dimensionless wavenumber K. The THF solutions, solid lines;

WKB solutions, dashed lines; and numerical solutions, circles, are shown.

FIG. 13. (Color online) A comparison omparison of the second Love mode

obtained by means of the THF solution, WKB solution, and numerical solu-

tion for various values of the dimensionless wavenumber K. The THF solu-

tions, solid lines; WKB solutions, dashed lines; and numerical solutions,

circles, are shown.

FIG. 14. (Color online) A comparison of the third Love mode obtained by

means of the THF solution, WKB solution, and numerical solution for various

values of the dimensionless wavenumber K. The THF solutions, solid lines;

WKB solutions, dashed lines; and numerical solutions, circles, are shown.
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the time-independent Schr€odinger-like differential equation,

which can be transformed under certain conditions into the

THE, whose solution can be expressed by the linear combi-

nation of the two THFs. By meeting these conditions, it has

defined a wide class of material functions for which the

exact solution can be found. The material functions of this

class are determined by eight distribution parameters, whcih

allow changing their profiles to a large extent. The expres-

sion of material functions using the THFs has been supple-

mented by the possibility of their description using

polynomial solutions when certain conditions are met.

To demonstrate the applicability and benefits of the pre-

sented exact solutions, we have compared the presented

exact analytical solutions with the solutions based on the

numerical method RKF 45 and the WKB method, w is usu-

ally used in cases where the exact analytical solution is not

known. We have employed two illustrative profiles of the

material functions to calculate both mode solutions and dis-

persion curves of the first three modes. The numerical solu-

tions verified the correctness of all of the results based on

the presented exact solutions. As expected, it turned out that

in the case of the relatively lower values of the wavenum-

bers, the presented exact solutions differ significantly from

the WKB approximation, and with increasing values of the

wavenumber, the WKB solution became more accurate.

Based on the performed calculations, it was found that

the substrate viscosity parameter l02 significantly affects the

imaginary part of the dispersion relation. In contrast, its

influence on its real part is negligible when considering the

same range of its values. However, the effect of the viscosity

parameter decreases with increasing values of the dimen-

sionless wave number K, therefore, it seems justified to

ignore the substrate viscosity when using the WKB method

because its accuracy is based on larger wavenumber values.

The presented exact analytical solutions allow us to study

the influence of functionally graded materials on the dispersion

behavior of Love waves. Furthermore, these solutions can also

be used to study the effects of various boundary conditions (e.g.,

imperfect interfaces), the effect of the initial stress, and locally

periodic structures of the surface layer on the Love waves.

We have demonstrated that in the case of the barrier-

type profile of the material function, the cut-on wavenumber

of the higher modes can be shifted based on its height, indi-

cating that the dispersion character of the Love waves can

be controlled by a suitable choice of the material function

profile. This fact could be the subject of further research,

especially when using an appropriate optimization method.
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APPENDIX A: GENERAL SOLUTION OF THE
TRICONFLUENT HEUN EQUATION

The triconfluent Heun equation is derived from the

Heun equation by the coalescence of the three finite regular

singular points with infinity.23 The canonical triconfluent

Heun equation has the form (see, e.g., Refs. 23 and 24)

d2uðnÞ
dn2

�ð3n2þ cÞduðnÞ
dn
þ aþðb� 3Þn½ �uðnÞ ¼ 0; (A1)

and its symmetric (self-adjoint) used form is

d2UðnÞ
dn2

þ a� c2

4
þ bn� 3

2
cn2 � 9

4
n4

� �
UðnÞ ¼ 0; (A2)

where

UðnÞ ¼ exp � n3 þ cn
2

� �
uðnÞ: (A3)

The quartic polynomial in Eq. (A2) does not contain the n3

term, and the coefficient of n4 is set equal to 9/4. This nor-

malization can be arranged by subjecting the independent

variable n to an innocuous transformation of the form

n0 ¼ d1nþ d0 (d0 and d1 are constants) but other

FIG. 15. (Color online) A comparison of the dispersion curves (right) belonging to the barrier-type profiles (solid and dashed lines) and the constant profile

(dotted line) of the material functions (left). The first mode, red line; second mode, black line; and third mode, blue line, are shown.

J. Acoust. Soc. Am. 150 (5), November 2021 A. Krpensky and M. Bednarik 3311

https://doi.org/10.1121/10.0006964

 27 February 2024 07:25:46



normalizations could equally well be used. The normaliza-

tion herein is commonly used; see, e.g., Ref. 23.

An analytical solution uðnÞ of Eq. (A1) can be

expressed using a power series of the form

uðnÞ ¼
X1
n¼0

bnn
n; jnj < 1: (A4)

The derivatives of u with respect to n are

duðnÞ
dn
¼
X1
n¼0

nbnn
n�1 ¼

X1
n¼0

ðnþ 1Þbnþ1n
n; (A5)

d2uðnÞ
dn2

¼
X1
n¼0

nðn�1Þbnn
n�2¼

X1
n¼0

ðnþ2Þðnþ1Þbnþ2n
n: (A6)

By substituting the power series, Eqs. (A4)–(A6), into Eq.

(A1), we obtain the recurrence relation

nðn� 1Þbn � ðn� 1Þcbn�1 þ abn�2

þ ðbþ 6� 3nÞbn�3 ¼ 0: (A7)

From the recurrence relation [Eq. (A7)], we can write

bn ¼
cðn� 1Þbn�1 � abn�2 � ðbþ 6� 3nÞbn�3

nðn� 1Þ ; n � 3;

(A8)

where

b0 ¼ 1; b1 ¼ 0; b2 ¼ �
a
2
: (A9)

For ða; b; cÞ 2 C, the THF represents a solution of the tri-

confluent Heun equation (A1) and can be written as

THFða; b; c; nÞ ¼
X1
n¼0

bnn
n; jnj < 1; (A10)

where bn are given by Eqs. (A9) and (A8). The derivative of

the THF (the prime THF) can be expressed as

d

dn
THFða; b; c; nÞ � THF0ða; b; c; nÞ

¼
X1
n¼0

nbnn
n�1; jnj < 1: (A11)

The general solution of the triconfluent Heun equation (A1)

is (see, e.g., Ref. 23)

uðnÞ ¼ C1THFða; b; c; nÞ

þ C2 exp ðn3 þ cnÞTHFða;�b; c;�nÞ; (A12)

where C1 and C2 are the integration constants.

There is the following identity:

THFða; b; 0; nÞ ¼ exp ðn3ÞTHFða;�b; 0;�nÞ; (A13)

which means that if c¼ 0, then the presented solutions in

Eq. (A12) are not linearly independent.

We can obtain the general solution of the symmetric

form of the triconfluent equation (A2) using the solution

(A12) and the transformation relation (A3),

UðnÞ ¼ C1 exp �n3þ cn
2

� �
THFða;b; c;nÞ

þ C2 exp
n3þ cn

2

� �
THFða;�b; c;�nÞ: (A14)

APPENDIX B: POLYNOMIAL SOLUTION OF THE
TRICONFLUENT HEUN EQUATION

We can see that the evaluation of successive terms of a

series solution [Eq. (A4) or (A10)] to the triconfluent Heun

equation (A1) is performed by means of a recurrence rela-

tion (A8), where the coefficient bn depends on n, the previ-

ous values of br (r< n), and the three parameters ða; b; cÞ.
Based on this recursive relation, it is possible to express a

solution of the triconfluent equation by a finite polynomial if

certain conditions are met. The conditions for the existence

of polynomial solutions can be formulated by the following

theorem (see, e.g., Refs. 23 and 35).

Theorem 1. Suppose that in the triconfluent Heun equa-

tion (A1), the parameters a, b, and c satisfy the following

two conditions:

(a) b ¼ 3ðN þ 1Þ; N ¼ 0; 1; 2;…;

(b) the determinant DNþ1ða; cÞ ¼ 0 of the matrix

MNþ1 ¼

a �c 2 � 1 0 0 � � � 0

3N a �2c 2 � 3 0 � � � 0

0 3ðN � 1Þ a �3c 3 � 4 � � � 0

0 0 3ðN � 2Þ a �4c � � � 0

..

. ..
. ..

. ..
. ..

. . .
. ..

.

3 � 3 a �ðN � 1Þc NðN � 1Þ
0 3 � 2 a �Nc

0 � � � 0 0 3 � 1 a

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: (B1)

Then the triconfluent Heun equation (A1) has a polynomial (Liouvillian) solution
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uðnÞ ¼ Pb=3�1ðnÞ;

where Pb=3�1ðnÞ denotes a polynomial of degree b=3� 1,
whose coefficients pn (n ¼ 0; 1;…; b=3� 1) are the solu-
tions of the following linear system of equations:

Mb=3 � p0; p1;…; pb=3�1ð Þ ¼ 0: (B2)
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.......................................3.2. Paper II

3.2 Paper II

Title: Surface love-type waves propagating through locally periodic inhomoge-
neous media

The second paper is a conference paper presented at The 29th Interna-
tional Congress on Sound and Vibration and is a direct follow-up to the
previously presented Paper I with the following extension - the FGM surface
layer is now repeated periodically N -times, resulting in a locally periodic
inhomogeneous elastic surface layer laid over a homogeneous substrate. In
order to simplify the whole calculation, the viscoelastic losses are neglected
for both the surface layer and the substrate. The solution is first obtained
for the first spatial period of the layer in exactly the same way as in Paper I,
therefore as a combination of the triconfluent Heun functions, and is then
extended to the whole domain by employing the Floquet-Bloch theory (see
Sec. 2.4), resulting in a very elegant analytical expression for the total solution
inside of the locally periodic FGM layer. The dispersion equation is then
formulated based on the same boundary conditions as presented in Paper I.
The case study follows for a gaussian-like profile of the material function and
the corresponding dispersion curves are plotted for various values of N with
the following observation: the original dispersion curves (corresponding to
N = 1) tend to split into N curves positioned closely together which then
form more widely separated groups in the overall dispersion graph. Since this
was only a short conference paper, no other profiles of the material function
were studied. Therefore, there are still a lot of further research possibilities in
this area. Then (similarly as mentioned above regarding Paper I.), the effect
of different boundary conditions at the top of the layer can also be studied in
the presence of the locally periodic surface layer.
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SURFACE LOVE-TYPE WAVES PROPAGATING THROUGH LO-
CALLY PERIODIC INHOMOGENEOUS MEDIA
Antonín Krpenský, Michal Bednařík
Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
e-mail: antonin.krpensky@fel.cvut.cz

In this paper, we introduce a novel exact analytical solution for the model equation governing the
propagation of Love-type waves in a locally periodic surface layer with continuous density and shear
modulus variations along the thickness direction, represented by a material function. Specifically, we
utilize the triconfluent Heun functions to obtain the solution for the base spatial period of the layer and
extend it to the entire layer through the Floquet-Bloch theory. Our approach allows for the derivation
of the dispersion equation and plotting the corresponding dispersion curves by applying appropriate
boundary conditions. The significance of this work lies in the extension of the class of material
function profiles for which exact analytical solutions can be obtained, demonstrating the potential for
broader applicability of our solution in diverse research fields.
Keywords: LOVE-TYPE WAVES, FUNCTIONALLY GRADED MATERIAL, FLOQUET-BLOCH
THEORY, TRICONFLUENT HEUN FUNCTIONS

1. Introduction

The propagation of Love-type shear surface elastic waves in functionally graded materials (FGMs)
is a subject of significant scientific and practical interest. Love waves find applications in various fields,
including seismology, geophysics, nondestructive testing of materials, seismic engineering, geotechnical
engineering and sensor technology. A comprehensive and well-structured review of Love waves and their
uses is available in chapter two of the book by Ebrahimi (2018) [1].
To fully understand the behavior of Love waves that propagate through an inhomogeneous layer, it is es-
sential to have access to exact analytical solutions of the corresponding model equations. These solutions
are crucial for predicting the response of the system under various conditions and for designing efficient
and effective wave-based technologies.

A significant advancement in exact analytical solutions of the model equation describing Love waves
in inhomogeneous media is presented in articles [2], [3]. Our intention is to utilize these published exact
solutions, which are based on the triconfluent Heun functions, to study the behavior of Love waves prop-
agating through a locally periodic structure consisting of inhomogeneous layers realized using FGMs.
Our approach is based on the utilization of the Floquet-Bloch theory (see e.g., [4]), which enables this
task to be solved effectively.

2. Exact analytical solution of the governing equations

In this paper, we investigate the propagation of Love-type waves in an inhomogeneous isotropic
elastic surface layer of thickness ℓ, where the shear modulus and density vary continuously along the

1



Figure 1: (Color online) Inhomogeneous layer laid on a homogeneous substrate.

thickness direction. The layer is placed on an infinite homogeneous substrate, as shown in Fig. 1.

To describe the shear modulus and density variation, we use the expressions

µ(z) = µ0η(z) , ρ(z) = ρ0η(z) , (1)

where η(z) is the material function. The model equation governing the propagation of Love-type waves
in the layer along the x axis can then be expressed as

∂2uy(x, z, t)

∂x2
+
∂2uy(x, z, t)

∂z2
+

1

η(z)

dη(z)
dz

∂uy(x, z, t)

∂z
=

1

c20

∂2uy(x, z, t)

∂t2
, (2)

where uy(x, z, t) is the y-component of the displacement vector and

c0 =

√
µ0

ρ0
. (3)

By assuming a time harmonic wave of the form

uy(x, z, t) = uy(z)e
ik(x−cpht) , (4)

where k = ω/cph is the wavenumber (ω is the angular frequency), cph stands for the phase velocity, and
further introducing the following dimensionless variables:

s =
z

ℓ
, U1 =

uy
ℓ
, K = kℓ , K0 =

cph
c0
kℓ , (5)

we can rewrite Eq. (2) as

d2U1(s)

ds2
+

1

η(s)

dη(s)
ds

dU1(s)

ds
+ (K2

0 −K2)U1(s) = 0 . (6)

For the homogeneous substrate, the equation governing the propagation of the wave is

d2U2(s)

ds2
+ (K2

s −K2)U2(s) = 0 . (7)

where U2(s) denotes the solution in the substrate,

Ks =
cph
cs
kℓ , (8)
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and cs =
√
µs/ρs represents the phase velocity of the SH waves in the substrate.

In the following text, we will use the same procedure as in the previous works ([2],[3]) to transform
Eq. (2) into a time-independent Schrödinger-like equation of the form

d2ψ(s)

ds2
+
[
G(s) + κ2

]
ψ(s) = 0 , (9)

where
κ = K2

0 −K2 . (10)

By using the following transformation

ψ(s) = ϕ(s)U1(s) , (11)

and substituting into Eq. (9) we obtain

d2U1

ds2
+

2

ϕ

dϕ
ds

dU1

ds
+
U1

ϕ

d2ϕ

ds2
+
[
G(s) + κ2

]
U1 = 0 . (12)

By comparing Eqs. (2) and (12) we can write the following conditions for the transformation:

ϕ(s) =
√
η(s) , (13)

d2ϕ

ds2
+ G(s)ϕ(s) = 0 . (14)

For the sake of this paper we assume the function G(s) to be a quartic polynomial expressed as

G(s) = a0 + a1(s− s0) + 2a2(s− s0)
2 + a3(s− s0)

3 − a4(s− s0)
4 , a4 ̸= 0 . (15)

Since according to Eqs. (13) and (14) G(s) determines the profile of the material function η(s), we call it
the generating polynomial. By further employing the transformation

ψ(s) = exp

(
1

2

∫
F (s) ds

)
φ(s) , (16)

where

F (s) = −2
√
a4

[
(s− s0)−

a3
4a4

]2
+

16a2a4 + 3a23

8a
3
2
4

, (17)

then after some algebra Eq. (9) takes the form of the triconfluent Heun’s equation

d2φ

dσ2
− (3σ2 + γ)

dφ
dσ

+ [α(κ) + (β − 3)σ]φ(σ) = 0 , (18)

where

σ = Q

[
(s− s0)−

a3
4a4

]
, Q =

(
2
√
a4
3

) 1
3

, (19)

and the parameters α(κ), β, γ are expressed as

α(κ) =
64(κ2 + a0)a

3
4 + 64a22a

2
4 + 32a2a

3
3a4 + 16a1a3a

2
4 + 3a43

64Q2a34
,

β =
24a4(a1a4 + a2a3) + 3a33

16a
5
2
4

, γ = −16a2a4 + 3a23

8Qa
3
2
4

. (20)
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The general solution to the triconfluent Heun’s equation (Eq. (15)) is then (see e.g., [5])

φ(σ) = A1 THF (α(κ), β, γ;σ) + B1 exp
(
σ3 + γσ

)
THF (α(κ),−β, γ;−σ) , (21)

where A1 and B1 are integration constants and THF stands for the triconfluent Heun function (see e.g., [2,
5]) . By combining the relations (16), (18), (19) the general solution to the time-independent Schrödinger-
like equation (Eq. (9)) can be expressed as

ψ(s) = A1 exp


−

Q3
(
s− a3

4a4
− s0

)3

+ γQ
(
s− a3

4a4
− s0

)

2


THF

[
α(κ), β, γ;Q

(
s− a3

4a4
− s0

)]

+ B1 exp



Q3

(
s− a3

4a4
− s0

)3

+ γQ
(
s− a3

4a4
− s0

)

2


THF

[
α(κ),−β, γ;−Q

(
s− a3

4a4
− s0

)]

= A1Φ1[α(κ), β, γ; s] + B1Φ2[α(κ), β, γ; s] . (22)

It is worth noting that evaluating confluent Heun functions and their derivatives can be easily accom-
plished using mathematical software such as Maple (version 10 and later) and Mathematica (version 12
and later).
The exact analytical solution to Eq. (6) can then be obtained by further combining the relations (11),
(13), and (22) as

U1(s) = A1Ψ1[α(κ), β, γ; s] + B1Ψ2[α(κ), β, γ; s] , (23)

where Ψ1,2(s) = Φ1,2(s)/
√
η(s).

The exact analytical solution for the homogeneous substrate (Eq. (7)) is then simply

U2(s) = A2 exp
(√

K2 −K2
s s

)
+ B2 exp

(
−
√
K2 −K2

s s
)
. (24)

3. Material functions based on the triconfluent Heun functions

The profile of the material function is determined by the generating polynomial, as previously men-
tioned. By comparing equations (9) and (14), we can immediately apply the solution (22) with κ = 0 for
the function ϕ(s). To further express the material function, we use Eq. (13), resulting in

η(s) = [C1Φ1(a0, a1, a2, a3, a4, s0; s) + C2Φ2(a0, a1, a2, a3, a4, s0; s)]
2 , (25)

where C1 and C2 are optional integration constants. Therefore, the material function is fully determined
by the eight distribution parameters {a0, a1, a2, a3, a4, s0, C1, C2}. This fact enables us to determine an
entire family of material functions of various profiles. Some examples of the profiles of the material
function (25) are depicted in Fig. 2.

4. Floquet-Bloch theory

We now assume that N of the same inhomogeneous elastic layers are laid over the homogeneous
substrate, resulting in a locally periodic structure for z ∈ ⟨0, Nℓ⟩, see Fig. 3. The locally periodic
material function then reads

ηlp(s) = η(s− ⌊s⌋) , for s ∈ ⟨0, N⟩ , (26)
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Figure 2: (Color online) Examples of the material function profiles η(s) for a given sequence of the
distribution parameters {a0, a1, a2, a3, a4, s0, C1, C2}. {1.04,1,1,0,1,0,1,0} – red line, {1,-1.5,1,0,7,0,1,0}
– black line, {1,1,0,0,9,0,1,0} – blue line, {-5,-3,3,0,3,0,0,1} – brown line.

Figure 3: (Color online) Locally periodic FG material structure.

where ⌊s⌋ represents the greatest integer less than or equal to s. In order to obtain the solution for the
whole locally periodic structure we employ the Floquet-Bloch theory, see e.g. [4]. First, we express the
solution in the first layer (based on Eq. (23)) in its normalised form

U1(s) = U1(0)v(s) + U ′
1(0)w(s) , (27)

where the functions v(s) and w(s) can be expressed as

v(s) =
Ψ′

2(0)

W [Ψ1,Ψ2](0)
Ψ1(s)−

Ψ′
1(0)

W [Ψ1,Ψ2](0)
Ψ2(s) , (28)

w(s) =
−Ψ2(0)

W [Ψ1,Ψ2](0)
Ψ1(s) +

Ψ1(0)

W [Ψ1,Ψ2](0)
Ψ2(s) , (29)

where
W [Ψ1,Ψ2](s) = Ψ1(s)Ψ

′
2(s)−Ψ′

1(s)Ψ2(s) (30)

is the Wronskian, meeting the conditions

v(0) = 1 , v′(0) = 0 , w(0) = 0 , w′(0) = 1 . (31)

By introducing the Floquet multiplicators (see e.g., [4])

λ1,2 =
h±

√
h2 − 4

2
, (32)
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where h = v(1)+w′(1), we can then express the corresponding Bloch waves for the first inhomogeneous
layer (unit) as

F̃1,2(s) = v(s) +
λ1,2 − v(1)

w(1)
w(s) . (33)

The Bloch waves in the whole locally periodic structure then take on a form

F1,2(s) = λ
⌊s⌋
1,2F̃1,2(s− ⌊s⌋) . (34)

The exact analytical solution of the model equation (6) then reads as

U(s) = AFBF1(s) + BFBF2(s) , s ∈ [0, N ] , (35)

where AFB and BFB stand for the integration constants. Please note that the Bloch waves F1,2(s) still
depend on the parameters α(κ), β, γ, but for the sake of readability we have omitted this explicit notation
in the text above.

5. Dispersion relation

The dispersion relation for the locally periodic problem can be derived by introducing the specific
boundary conditions as follows:

1. The surface of the first layer is assumed traction free, i.e.

dU1(s)

ds

∣∣∣∣
s=0

= 0 . (36)

2. The displacement component and the respective stresses are assumed continuous on the boundary
between the last layer and the substrate, i.e.

U1(s = N) = U2(s = N) , (37)

µ(N)
dU1(s)

ds

∣∣∣∣
s=N

= µs
dU2(s)

ds

∣∣∣∣
s=N

, (38)

3. The regularity condition at infinity:
lim
s→∞

U2(s) = 0 . (39)

From the last condition (Eq. (39)), we immediately get A2 = 0. Therefore, three integration constants
(AFB, BFB, B2) remain. By solving the system of Eqs. (36), (37) and (38) we obtain the respective
dispersion relation in its implicit form

H(κ) = − µs

ηlp(N)µ0

√
K2

0 −K2
s − κ2 , (40)

where

H(κ) ≡ F ′
1(α(κ), β, γ; 0)F ′

2(α(κ), β, γ;N)− F ′
1(α(κ), β, γ;N)F ′

2(α(κ), β, γ; 0)
F ′
1(α(κ), β, γ; 0)F2(α(κ), β, γ;N)− F1(α(κ), β, γ;N)F ′

2(α(κ), β, γ; 0)
. (41)

By solving Eq. (40) we can then determine the respective dispersion characteristics cph = cph(K).
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6. Results and discussion

In this section we present some selected results based on the theory derived above (all the calculations
were performed using Maple 17). The material parameters for the inhomogeneous layer (FG material)
and the homogeneous substrate were chosen as

µ0 = 30GPa , ρ0 = 2700 kgm−3 (Aluminium) ;

µs = 150GPa , ρs = 3960 kgm−3 (Alumina) .
(42)

The corresponding values of c0 and cs are then

c0 = 3333m s−1 , cs = 6155m s−1 . (43)

For the sake of this paper we use the following distribution parameters:

a0 = −69.09 , a1 = 668.55 , a2 = −1049.60 , a3 = 2861.29 , a4 = 1430.65 ,

s0 = 0 , C1 = 1.49 , C2 = 1.49 , (44)

resulting in the Gaussian-like profile of the material function given in Fig. 4.
Based on the dispersion equation (40), the corresponding dispersion curves cph = cph(K) are plotted

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

s

η
(s
)

Figure 4: Gaussian-like profile of the material function.

in Fig. 5 for N = 1 (a), N = 3 (b) and N = 6 (c) inhomogeneous layers. The figure illustrates the
intriguing impact of the Gaussian-like profile of the material function on the dispersion characteristics.
As evidenced by the plot, the dispersion curves that correspond to each individual Love-mode form
discrete groups of N , with the separation between these groups decreasing as the mode order increases.
Note that cph ∈ (c0, cs⟩ for all the modes.

7. Conclusion

In this article, we present a calculation of dispersion curves for Love waves propagating through
a inhomogeneous locally periodic structure comprised of layers made from functionally graded (FG)
material. The material parameters of the FG material vary spatially along the z-axis according to a
Gaussian-like profile of the material function. The calculations are based on the exact analytical solution
for Love-type waves in an inhomogeneous layer, which is derived using the triconfluent Heun functions.
To calculate the propagation of Love-type waves in a locally periodic structure, Floquet-Bloch theory is
employed. The resulting dispersion curves reveal how the number N of inhomogeneous layers in the
locally periodic structure influences the dispersion characteristics in a non-intuitive manner.
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Figure 5: The dispersion curves for the gaussian-like profile of the material function. (a) First 3 modes
for N = 1; (b) First 9 modes for N = 3; (c) First 18 modes for N = 6.
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3. Collection of publications ...............................
3.3 Paper III

Title: A new class of approximate analytical solutions of the Pridmore-Brown
equation

The third presented paper published in the Journal of Mathematical Physics
is focused on the propagation of acoustic waves through a two-dimensional
acoustic waveguide (two parallel rigid walls with defined spacing) in the
presence of a non-uniform (inhomogeneous) time independent parallel shear
flow. That means the direction of the mean flow velocity is parallel to the
waveguide walls. The spatial dependence of the mean flow velocity is then
dependent only on the direction perpendicular to that one of the flow and
it’s profile is given by the function η which will be referred to as the mean
flow profile hereinafter.

By assuming an acoustic wave travelling along the waveguide the cor-
responding model Webster-type equation describing the acoustic pressure
distribution across the waveguide cross-section is derived from the more gen-
eral form of the so called Pridmore-Brown equation (which generally assumes
a three-dimensional waveguide) and by a similar procedure as presented in
the two previous papers is transformed into the form of the triconfluent Heun
equation. However, in this case the transformation can not be done exactly
and therefore in the process of the transformation an approximation step is
involved. The solution to the model equation (which is now only an approxi-
mate analytical) is then expressed as a combination of the triconfluent Heun
functions (see Sec. 2.1). Finally, the boundary conditions at the waveguide
walls are expressed, making the formulation of the problem complete. At
this point, it is convenient to note that the accuracy of the approximation
depends on the Mach number (defined here as the maximum of the mean
flow profile divided by the speed of sound for the respective medium at rest)
in a way that the higher the Mach number the worse the approximation.

The succeeding study is now divided into the two parts. First, we assume
a symmetric parabolic mean flow profile for which the approximation (as
mentioned above) during the process of the model equation transformation
is demonstrated and the accuracy of the approximation is derived, whereas
in this case the approximation error is proportional to the fourth power of
the Mach number. The first four upstream and downstream modes of the
solution are then plotted together with the numerical results obtained via
the RKF45 method in order to assess their accuracy that is excellent for the
specific case. In the second part of the study, we assume the most simple
forms of the symmetric mean flow profiles expressed by an even power n of
the corresponding coordinate and a comprehensive graph of the solutions

48



...................................... 3.3. Paper III

to the model equation is displayed for various values of n, providing a good
assesment of the approximation method accuracy. A short discussion why in
this case the high frequency limit WKB approximation (see Sec. 2.3) can not
be considered as an analytical solution is also present.

The main scientific contribution of this paper is that the analytical solutions
to the model equation are known only for a very limited set of functional
dependencies of the mean flow profiles and our solutions, even though only
approximate analytical, can be generally used to any form of the mean flow
profile where the approximation is still valid.
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ABSTRACT

There is only a limited amount of known analytical solutions to the Pridmore-Brown equation, mostly employing asymptotic behavior for
a certain frequency limit and specifically chosen flow profiles. In this paper, we show the possibility of transformation of the Pridmore-
Brown equation into the Schrödinger-like equation for the case of two-dimensional homentropic mean flow without critical layers. The
corresponding potential that depends on the mean flow profile can then be approximated by a quartic polynomial, leading to a triconfluent
Heun equation whose solution based on the triconfluent Heun functions is generally known. The quality of this approximation procedure is
presented for the case of symmetric polynomial flow profiles for various values of polynomial order and the Mach number. A more detailed
example is then shown for a quadratic mean flow profile, where the solution is accurate up to the third order of the Mach number.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098473

I. INTRODUCTION

Sound propagation in parallel shear flows presents a topic with high application relevance. Many devices, such as engine nacelles or
various ventilation systems, incorporate parts in which the background flow varies across the duct but not along. Under these circumstances,
the compressible Euler equations can be rearranged and linearized around the mean flow to yield a third-order wave equation for small
pressure perturbations. Finding its time-harmonic solution by means of the Fourier transform in the axial direction leads to an eigenvalue
problem, bearing the name of its founding author David Clifford Pridmore-Brown.1 Solutions to the Pridmore-Brown equation serve not
solely for the description of the sound propagation per se, but they also find rich opportunities in valuable auxiliary tasks, e.g., assessment
of the effective liner impedance2,3 or benchmarking the respective boundary conditions4 or as one of the sequential steps when dealing with
more advanced scenarios, e.g., the evolution of the modes along a duct with varying cross section5 or estimation of fluid-dynamic loading on
the structure of the pipe.6

Profound reflection of the existing literature might be found in recent articles by Rienstra.5,7 From the analytical point of view, the
Pridmore-Brown equation is predominantly solved by perturbation techniques (WKB, multiple-scales) when asymptotic behavior could be
assumed (see, e.g., Refs. 5 and 7) or, for instance, by Frobenius expansion around a singularity occurring when the flow speed matches the
phase velocity of the perturbation (see, e.g., Refs. 8–10). In addition, there are specially adapted numerical techniques for this task (see,
e.g., Refs. 5, 7, and 11–14). Apart from the analytical solution by Goldstein and Rice,2 there are other analytical treatments of equations
similar to the Pridmore-Brown problem by means of the hypergeometric confluent functions.15–18 However, these solutions relate only to the
linearly sheared flow. Recently, Zhang and Oberlack employed the confluent Heun functions to solve the Pridmore-Brown equation for the
exponential flow profile.19 Although approximative, the solution presented below is more versatile than the relevant, yet special case discussed
by Zhang and Oberlack.

Our primary goal is to present a new way of analytically solving the Pridmore-Brown equation. We are going to show that the Pridmore-
Brown equation can be transformed into the Schrödinger-like equation whose potential can be approximated by a quartic polynomial leading
to a closed-form analytical solution employing the triconfluent Heun functions (see, e.g., Refs. 20–23). Specifically, for the quadratic flow
profile, an excellent approximation can be found for any frequency and up to the third order in the Mach number.

J. Math. Phys. 63, 083101 (2022); doi: 10.1063/5.0098473 63, 083101-1
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This paper is organized as follows. Section II is devoted to a brief derivation of the Pridmore-Brown equation and its two-dimensional
form. The transformation of the employed model equation to the Schrödinger-like equation followed by the corresponding closed-form
approximate analytical solution is shown in Sec. III. The solution is illustrated on a family of polynomial flow profiles given in Sec. IV.
Following paragraphs are dedicated to discussion (Sec. V), and the conclusions are given in Sec. VI.

II. PRIDMORE-BROWN EQUATION

A. Brief derivation of the general form of the Pridmore-Brown equation

For the sake of brevity, the derivation from a general form of compressible Euler equations is omitted (see, e.g., the manipulations in the
Appendix of Ref. 7). Instead, the convected wave equation in parallel inviscid shear flow is considered as the starting point. Assume a sound
propagation in a duct of constant cross section oriented along x. Vectors of the mean velocity u0 = u0ex are parallel; their magnitudes are
varying over the waveguide cross section but remain constant along the duct [u0 = u0(y, z), see Fig. 1]. The latter condition is assumed for
the mean density ρ0(y, z) and speed of sound c0(y, z) as well, while the mean pressure p0 is constant uniformly. The speed of sound c0(y, z)
is related to the mean pressure and density as c2

0 = γp0/ρ0, with γ denoting the ratio of specific heats. Under these assumptions, the wave
equation for pressure perturbations p′(x, y, z, t) reads (see, e.g., Ref. 7)

D3
0p′

D0t3 + 2c2
0
∂

∂x
(∇�u0 ⋅ ∇�p′) − D0

D0t
∇ ⋅ (c2

0∇p′) = 0, (1)

where

D0

D0t
= ∂

∂t
+ u0

∂

∂x
, (2)

∇� = ( ∂

∂y
,
∂

∂z
). (3)

For a low Mach number flow [M = max(u0)/c0] without temperature gradient, the ambient density ρ0 and speed of sound c0 are constant,
and we assume this case henceforth. The solution to Eq. (1) is sought in the form

p′(x, y, z, t) = P(y, z)ei(kx−ωt), (4)

where P, ω, and k denote the complex pressure amplitude, the angular frequency, and the wavenumber in the direction of the waveguide,
respectively, and i =√−1. By inserting Eq. (4) into Eq. (1), the Pridmore-Brown equation is obtained for the pressure amplitude P after some
manipulations,

Γ̃ 2∇� ⋅ ( 1
Γ̃ 2∇�P) + (Γ̃ 2 − k2)P = 0, where Γ̃ = ω − ku0

c0
. (5)

The absence of critical layers (where Γ̃ ≈ 0) is assumed henceforth (see Ref. 10 for further commentary).

FIG. 1. Geometry of the assumed waveguide structure with parabolic mean flow.
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B. Two-dimensional case

In the following, the considerations are restricted to the (x, y) plane. For this assumption, a specific case of the Sturm–Liouville problem
is obtained from Eq. (5),

Γ̃ 2 d
dy
( 1

Γ̃ 2
dP
dy
) + (Γ̃ 2 − k2)P = 0. (6)

By expanding the first term in Eq. (6), we get
d2P
dy2 − 2

Γ̃
dΓ̃
dy

dP
dy
+ (Γ̃ 2 − k2)P = 0. (7)

This equation stays in the focus of the paragraphs to follow. Before any further steps are taken, Eq. (7) is made dimensionless by introducing
the following variables:

s = y
H

, Ω = H
c0

ω, K = kH, u0(y) = c0Mη(s), (8)

where H, s, Ω, K, and M denote the characteristic length (such as the waveguide height), the dimensionless transversal coordinate, angular
frequency, wavenumber, and the maximum Mach number through the waveguide cross section, respectively, and the normalized function
η(s) represents the mean flow profile (see Fig. 1). Hence, the dimensionless Pridmore-Brown equation reads

d2P
ds2 − 2

Γ
dΓ
ds

dP
ds
+ (Γ2 − K2)P = 0, where Γ(s) = Ω − KMη(s). (9)

Note that Eq. (9) is linear in P, and therefore, the pressure amplitude might be arbitrarily scaled.

III. APPROXIMATE CLOSED-FORM SOLUTION AND DISPERSION RELATION

A. Approximate analytical solution of the model equation

In this section, we are going to show that Eq. (9) can be transformed into a Schrödinger-like equation (see Refs. 24–26 for an example
of a similar procedure undertaken on simpler equations and Ref. 27 for the occurrence of the Schrödinger-like equation arising from the
Pridmore-Brown equation). If its potential is in the form of a quartic polynomial, it can be further transformed into the triconfluent Heun
equation (see below).

By substituting
P = ΓΨ (10)

into Eq. (9), we arrive at its Liouville normal form

d2Ψ
ds2 + G(s)Ψ = 0, where G(s) = 1

Γ
d2Γ
ds2 − 2( 1

Γ
dΓ
ds
)2 + Γ2 − K2. (11)

Our goal is to approximate the potential G(s) by a quartic polynomial in order to be able to solve Eq. (11) analytically. First, let us rewrite G(s)
using the expression for Γ in Eq. (9). We get

G(s) = −KMη′′
Ω − KMη

− 2( KMη′
Ω − KMη

)2 + (Ω − KMη)2 − K2. (12)

One can see that for lower Ω, the first two terms dominate. Note that these terms are generally harder to be approximated by a polynomial
curve than the latter ones.

Let us now assume G(s) as
G(s) = a0 + a1s + 2a2s2 + a3s3 − a4s4, a4 ≠ 0. (13)

Using the following change of variables,

s = σ
Q
+ a3

4a4
, where Q = (2

√
a4

3
)

1
3

, (14)

Eq. (11) could be transformed into the representative form of the triconfluent Heun equation (for more details, see, e.g., Ref. 20),

d2Ψ
dσ2 + (A0 + A1σ + A2σ2 − 9

4
σ4)Ψ(σ) = 0, (15)
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where

A0 = 3a4
3 + 32a2a2

3a4 + 64a1a3a2
4 + 256a0a3

4

256Q2a3
4

, A1 = a3
3 + 8a2a3a4 + 8a1a2

4

8Q3a2
4

, (16)

A2 = 3a2
3 + 16a2a4

8Q4a4
. (17)

By substituting the expression

Ψ(σ) = exp(−σ3

2
+ A2

3
σ)Φ(σ) (18)

into Eq. (15), we arrive at the canonical form of the triconfluent Heun equation as (see, e.g., Ref. 20)

d2Φ
dσ2 − (3σ2 + γ)dΦ

dσ
+ [α + (β − 3)σ]Φ(σ) = 0. (19)

Here,

α = A0 + A2
2

9
, β = A1, γ = −2

3
A2. (20)

The solution of Eq. (19) can then be expressed as (see, e.g., Ref. 20)

Φ(σ) = A1 THF(α, β, γ; σ) + B1 exp(σ3 + γσ)THF(α,−β, γ;−σ), (21)

where A1 and B1 are integration constants and THF stands for the triconfluent Heun function. By substituting this back into expression (18)
and further employing relations (10) and (14), we arrive at the final closed-form approximate analytical solution for the complex pressure
amplitude,

P(s) = A1Γ(s) exp[−Q3

2
(s − a3

4a4
)3 − γ

Q
2
(s − a3

4a4
)]THF[α, β, γ; Q(s − a3

4a4
)]

+ B1Γ(s) exp[Q3

2
(s − a3

4a4
)3 + γ

Q
2
(s − a3

4a4
)]THF[α,−β, γ;−Q(s − a3

4a4
)]. (22)

Finally, this could be expressed in the following compact form:

P(s) = A1P1(α, β, γ; s) + B1P2(α, β, γ; s), (23)

which we will use from now on.
For the purposes of practical computations, the triconfluent Heun functions might be expressed as power series (see, e.g., Refs. 20, 24,

and 28) that can be easily implemented in Matlab, Python, etc. Moreover, the Heun functions are available in Maple (from Maple 10 on) and
Wolfram Language (from Mathematica 12 on). The results presented below are obtained by Maple 17.

B. Calculation of integration constants and dispersion relation

In order to determine the integration constants of the solution (23) of Eq. (11) for a chosen frequency, suitable boundary conditions must
be supplemented to the problem. For a specific example, we assume that the waveguide walls are perfectly rigid, and according to Eq. (27), the
mean flow is vanishing at the walls. Hence, the use of Neumann boundary conditions for perturbation pressure amplitudes is justified,

dP
ds
∣
s=0
= dP

ds
∣
s=1
= 0. (24)

In order to obtain a nontrivial solution of this system of equations, the corresponding determinant must equal to zero, resulting in the equation

dP1

ds
∣
s=0

dP2

ds
∣
s=1
− dP2

ds
∣
s=0

dP1

ds
∣
s=1
= 0. (25)

Equation (25) represents an implicit form of a dispersion equation D(Ω, K) = 0, which needs to be solved by an iterative numerical method
(the bisection method was sufficient for the task in our case). For every dimensionless angular frequency Ω, there exists one or more solutions
of the dispersion equation: KΩ0, . . . , KΩN , where KΩi represents the dimensionless wavenumber of the individual wave mode. After solving
the dispersion equation, the integration constants can be found using one of Eq. (24), and therefore, the solution is complete.
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FIG. 2. First four symmetric mean flow profiles defined by Eq. (26).

C. Set-up of numerical verification

Each solution of Eq. (9) based on the triconfluent Heun functions (THF solution) was verified by a numerical solution of the same
equation. We made use of the facts that the Neumann boundary condition for the pressure is demanded by the physics of the studied case
(see above), and the functions giving the eigenmode shapes can be multiplied by an arbitrary scalar. Hence, the boundary value problem
was solved as the initial value one by the Runge–Kutta–Fehlberg (RKF45) method (see, e.g., Ref. 29), and the wavenumber K required to
satisfy the opposite boundary condition was sought by the bisection method. The above described numerical methods were implemented
in Maple 17.

FIG. 3. Downstream [left, (a)–(d)] and upstream [right, (e)–(h)] fundamental modes for various dimensionless frequencies and the parabolic flow profile with maximum Mach
number M = 0.4. (a) and (e): Ω = 2, (b) and (f): Ω = 5, (c) and (g): Ω = 10, and (d) and (h): Ω = 20. The lines and dots represent analytical and numerical solutions,
respectively.

TABLE I. Values of the dimensionless wavenumber K obtained using the THF solu-
tions and the RKF45 method for various values of frequency Ω corresponding to
the fundamental downstream (left) and upstream (right) mode.

Ω KTHF KRKF45

2 1.567 1.557
5 3.921 3.916
10 8.028 8.024
20 17.13 17.13
2 −2.719 −2.662
5 −6.937 −6.925
10 −15.02 −15.03
20 −31.75 −31.77
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IV. APPROXIMATE CLOSED-FORM SOLUTIONS FOR SPECIFIC PROFILES

For the purpose of this paper, we use a symmetric profile η(s) expressed by

η(s) = 1 − 2n(s − 1
2
)n

, (26)

where n is even, but in general, various other profiles can be used. First four profiles defined by the expression (26) are shown in Fig. 2. The
value M = 0.4 is used henceforth.

Next, two specific techniques of approximation of expression (12) are introduced.

FIG. 4. All higher modes for dimensionless frequency Ω = 20 and the parabolic flow profile with the maximum Mach number M = 0.4. The lines and dots represent analytical
and numerical solutions, respectively.
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A. Expansion for small KM/Ω
In order to show a specific example of the above-given procedure, we will focus on approximating the quadratic mean flow profile

expressed as

η(s) = 1 − 4(s − 1
2
)2

, (27)

but in general, any quadratic profile can be used. After substituting expression (27) into Eq. (12) and expanding up to the third order of a
small parameter KM/Ω, we obtain the following equation:

d2Ψ
ds2 + G(s)Ψ = 0, (28)

where

FIG. 5. The first four downstream modes for various orders of the mean flow profile and Ω = 18.3.
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G(s) = (Ω − KMη)2 − K2 − d2η
ds2

KM
Ω
− [η d2η

ds2 + 2(dη
ds
)2]K2M2

Ω2

− [η2 d2η
ds2 + 4η(dη

ds
)2]K3M3

Ω3 +O(K4M4

Ω4 )
≈ a0 + a1s + 2a2s2 + a3s3 − a4s4 (29)

takes the form of a quartic polynomial. Strictly speaking, solutions Ψ of Eqs. (11) and (28) are not fully equivalent. However, we do not change
the labels for the sake of readability. This solution is approximate analytical one with accuracy up to the O(K4M4/Ω4).

First, we demonstrate the fundamental modes in downstream and upstream directions of propagation for various dimensionless fre-
quencies Ω (see Fig. 3). The comparison between the wavenumber (eigenvalue) values found using the THF solution, and the numerical
solution is presented in Table I. With increasing frequency, a relatively higher portion of the acoustic energy is distributed at the walls for the
downstream propagation and along the centerline in the upstream one.

One can observe (e.g., from Fig. 3) that our approximation tends to slightly deviate from the numerical solution as Ω→ 0. This is
explained by considering the following: From the square bracket in Eq. (11), only the first two terms need to be approximated—the other
two are already a quartic polynomial in s. Now note that for the parabolic profile, both approximated terms are inversely proportional to Ω.
Hence, with increasing Ω, there is relatively lower importance of the approximated terms regarding the whole expression.

Next, the frequency Ω = 20 is kept constant, and various downstream and upstream mode shapes with respective wavenumbers K are
calculated (see Fig. 4). Again, the disparities between the propagation directions take place in the mode shapes as well as in the distribution
of the eigenvalues, similarly to the results presented by Rienstra for the linearly sheared flow profile.7 Note that both fundamental modes are
omitted in Fig. 4 for the sake of brevity—they have been already depicted in Fig. 3.

B. Quartic polynomial fit

Another possibility is to fit a quartic polynomial directly to the right-hand side of Eq. (12). In this section, Ω = 18.3 was chosen (corre-
sponding to 1 kHz at 1 m waveguide height). In order to assess and compare the quality of this approximation, the first three downstream
modes are plotted in Fig. 5 for various flow profile orders n. We can see that for the case of n = 8, the approximate solutions start to deviate
from the numerical ones, hence presenting a marginal case of applicability.

V. DISCUSSION

Complexity of Eq. (12) prevents us from detailed analytical prediction regarding the family of flows that can be approximated. It is highly
unlikely that there is η(s) leading to the quartic polynomial exactly. Our attempts have revealed that by simple means of the Taylor expansion
in s, the linear [η(s) ∼ s] and the exponential [η(s) ∼ exp(s)] flow profiles can be successfully approximated for wide ranges of subsonic Mach
numbers and frequencies, as well as sin2-profiles and some others. However, in full generality, we must resort to the necessity of evaluating
Eq. (12) case-by-case.

In the limit of high frequencies (such as Ω = 20, which is employed in Fig. 4), the WKB method might seem to be an alternative way of
the approximate solution. However, the procedure given by Rienstra for the Pridmore-Brown equation in Ref. 7 does not lead to analytically
solvable expressions for the family of flows defined by Eq. (26). Note, for instance, that our solution for quadratic profiles gives good results
even for Ω = 2 (see Fig. 3).

In the examples given above, the mean flow is zero at the duct wall that simplifies the matter regarding the boundary conditions. However,
the use of Ingard-Myers boundary conditions30 for a compliant wall with grazing flow is possible within the introduced framework. We have
only chosen a less complex example for clarity and brevity.

VI. CONCLUSIONS

It has been shown how the new class of approximate analytical solutions for the Pridmore-Brown equation are constructed utilizing the
triconfluent Heun functions. The analysis is restricted to the case of two-dimensional (2D) homentropic mean flow without critical layers.
The key step is reformulating the Pridmore-Brown equation as a Schrödinger-like problem and then approximating its potential by a quartic
polynomial. The specific examples were given for a mean parabolic flow profile with the accuracy up toO(K4M4/Ω4). According to the results,
the agreement with the numerical solution is excellent, and the results show the important physical features, such as Doppler compression in
upstream modes or rearranging the acoustic energy distribution due to the presence of non-uniform flow (see Fig. 4).

Moreover, we have shown how our approximate solution works for the velocity profiles of higher polynomial order (see Fig. 5). Here,
one can observe that n = 8 at M = 0.4 and Ω = 18.3 presents a marginal case of the method applicability.

It is necessary to emphasize that the approximate solution expressed by Eq. (23) is closed-form and analytical. Therefore, it allows further
useful manipulations, such as assembling the dispersion relation or explicit use of boundary conditions (see Sec. III).

The presented results are useful not only for the investigation of the sound transmission in the parabolic mean flow spanning the whole
cross-section of a duct, but they can serve as a basis for enhancing the description of scenarios, in which only linear or linear-then-constant
profiles were employed (such as the acoustics of shear layers and their matching to the uniform flow or investigation of the singularities—see,
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e.g., Refs. 8 and 10). In the future, the variation of ρ0 and c0 in the mean flow profile due to nontrivial temperature distribution might be
taken into account as well by a similar procedure as presented above. Finally, let us recall once again that we have used polynomial profiles
only for definiteness; however, the key condition of applicability is not the polynomial nature of the flow profile itself but the possibility of
approximating the expression in Eq. (9) by a quartic polynomial, which is a more general case.
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Title: Elastic P-wave manipulation utilizing functionally graded parallel plate
gradient refractive index structures

In the fourth paper published in Wave Motion we propose a novelty type
of gradient refractive index (GRIN) structure by which the elastic P-wave
(primary/pressure) field can be controlled. The designation P-waves stands
for the longitudinal bulk elastic waves, meaning that the particles oscillate
in the same direction as the wave propagates (they can be considered as
an analogy to the classical acoustic waves in gaseous media). The main
motivation of this research was the fact that not many papers deal with
the manipulation of P-waves and much more typically focus on the S-waves
(secondary) which are on the contrary characterised by the oscillation of the
particles in the direction perpendicular to the direction of propagation.

The proposed GRIN structure consists of several inhomogeneous plates
layered vertically on top of each other and separated by thin gaps. Each
one of those plates is considered as a FGM (see Sec. 2.5) whose density
and Young modulus vary according to the respective material function (see
Eq. (2.80)). The shape of the material function is chosen as one period
of the sine function squared (shifted vertically), where the height of the
profile is controlled by the parameter q. Based on the model equation of the
Webster-type (see Sec. 2.2) describing the propagation of longitudinal elastic
waves in such inhomogeneous plates and the corresponding approximate
analytical high frequency limit WKB solution (see Sec. 2.3) an approximate
analytical expression of the effective phase velocity for each plate is given as a
function of the parameter q. The idea is now as follows: First, we assume two
homogeneous elastic half spaces on each side of the proposed GRIN structure.
Now there is an incoming plane elastic P-wave incident on the GRIN structure
from the left which then separates into individual partial longitudinal waves
propagating inside the individual FGM plates. By a suitable choise of the
parameter q for each plate we can realize a different time delay of each of the
corresponding partial waves, resulting in a various possibilities of controlling
the outcoming P-wave field on the right side of the GRIN structure that is
then formed by the superposition of the delayed partial longitudinal waves.

Next, we have demonstrated the two specific cases of the mentioned elastic
P-wave field control - focusing and deflecting. For each of those cases we
derived the respective distribution of the values of the parameter q for each
plate based on the simple geometric approach, resulting in a corresponding
material function for each plate. Both of those distributions were then applied
to the numerical simulation in COMSOL Multiphysics for specifically chosen
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focusing point distance in the first case and wave deflection angle in the second
one, whereas the results were compared with the theoretical calculations with
excellent results. Finally, a numerical study was conducted in the focusing
case to demonstrate the validity of the high frequency approximation of the
WKB solution for the two previously mentioned computations.
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a b s t r a c t

This paper presents a new Gradient Refractive Index (GRIN) structure, which utilizes a
series of thin plates made of functionally graded material separated by narrow gaps,
to control elastic P-wave fields. The proposed technique is demonstrated through two
basic examples of wave manipulation: focusing and deflecting, but has the potential for
a wide range of applications. To verify the theoretical calculations, COMSOL Multiphysics
simulation software was utilized to solve the full Navier–Lamé equations. Overall, the
results of this study demonstrate the effectiveness of the proposed GRIN structure in
manipulating elastic P-wave fields.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The control of elastic wave fields is a topic of significant scientific and practical interest. Manipulating elastic waves,
including focusing, scattering, steering, reflection, and cloaking, can be achieved using various methods. One common
approach involves using elastic metamaterials and phononic crystals, as demonstrated in numerous publications (e.g., [1–
8]). Functionally graded materials (FGMs) are a particularly interesting means of controlling elastic waves [9]. FGMs
are microscopically inhomogeneous composites made by mixing metals and ceramics, where the material properties
change continuously and smoothly according to a prescribed spatial dependence. There are several advanced methods for
fabricating desired FGMs (see e.g., [10]). Some spatial dependencies of the material parameters allow for exact analytical
solutions to the corresponding model equations [11–13]. FGMs are especially used to control the transmission properties
of phononic crystals [13–18].

Another approach to manipulating elastic waves involves using an array of plates whose dimensions are adjusted to
control the waves. This technique has been demonstrated in the literature, such as in the paper by [19,20]. The mentioned
passive methods enabling manipulation of elastic waves can be complemented by active methods using phase-array
transducers (see, for example, [21–23]).

In this work, we present a novel approach to controlling elastic waves using an array of thin plates with an invariable
geometric arrangement. Specifically, we assume that each plate is made of a different FGM composed of two distinct
materials, with these materials being the same for each plate. However, the FGMs in individual plates differ in the
prescribed spatial dependence of the considered material parameters, resulting in different spatial dependencies of the
phase velocity of the longitudinal elastic waves. This approach of ours is inspired by the use of flat gradient-index lenses
for the manipulation of electromagnetic waves in optics (see e.g., [24–26]). Our approach enables a wider frequency range

∗ Corresponding author.
E-mail address: antonin.krpensky@fel.cvut.cz (A. Krpensky).
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of wave control compared to the method based on adjusting the plate dimensions and distances from one another, as
demonstrated in [19,20].

In this paper, we present a detailed analysis of the properties of Functionally Graded Materials (FGMs) and their
application in the design of Gradient Refractive Index (GRIN) structures for controlling elastic P-waves (primary/pressure
waves). The paper is organized as follows:

Firstly, in Section 2, we briefly describe the method of representing the materials properties of FGMs. Next, in Section 3,
we define an inhomogeneous plate that serves as a building block of the GRIN structure and derive an analytical expression
for the effective velocity of longitudinal elastic waves propagating inside of this plate. We then proceed to define the
GRIN structure itself in Section 4, providing two examples of how the P-wave field can be controlled, namely focusing
and deflecting. In Section 5, we present our numerical results, which were obtained using the COMSOL Multiphysics
software. Section 6 focuses on an in-depth exploration of the benefits of our GRIN structure, including the feasibility of its
implementation and its potential for generating S-waves beyond the GRIN structure. Finally, we summarize our findings
and conclusions in Section 7. In Appendix A, we outline the derivation of the model equation for longitudinal elastic waves
in inhomogeneous thin plates. We introduce the WKB method for finding an approximate analytic solution to the model
equation in Appendix B.

2. Properties of one-dimensional FGM constituent materials

Consider a functionally graded material (FGM) plate composed of two distinct materials, denoted as MI and MII. Any
given material property P can be mathematically represented as (see e.g., [13,27–30])

P = PIVI + PIIVII , (1)

where PI, PII denote the properties of the corresponding materials and VI, VII represent the corresponding volume fractions
while the following condition holds

VI + VII = 1 . (2)

Assuming now the material composition varying continuously along the x direction only and denoting VII ≡ V (x) we can
rewrite Eq. (1) as

P(x) = PI[1 − V (x)] + PIIV (x) . (3)

Note that since the dimensionless function V (x) represents the volume fraction, the following condition must hold inside
of the respective FG material:

0 ≤ V (x) ≤ 1 . (4)

By further rearranging we arrive at

P(x) = PI[1 + PV (x)] , (5)

where P = (PII/PI) − 1.
With respect to Eq. (5) the effective material elastic constant E and the mass density ρ are expressed as

E(x) = EIIV (x) + EI[1 − V (x)] = EI[1 + aV (x)] , (6)

ρ(x) = ρIIV (x) + ρI[1 − V (x)] = ρI[1 + bV (x)] . (7)

Here

a =
EII
EI

− 1 , b =
ρII

ρI
− 1 . (8)

3. Effective longitudinal wave phase velocity in a FGM plate

Our research focuses on the possibility of manipulating elastic P-waves. The key element of the wave manipulation
structure is a FGM plate of length ℓ and thickness h, see Fig. 1.

The model equation describing the propagation of longitudinal elastic waves in such a plate can be written as (for the
derivation, please refer to Appendix A)

∂2u(x, t)
∂x2

+
1

E(x)
dE(x)
dx

∂u(x, t)
∂x

=
1

c2L (x)
∂2u(x, t)

∂t2
, (9)

where the longitudinal wave speed is

cL(x) =

√
E(x)(1 − ν)

ρ(x)(1 + ν)(1 − 2ν)
. (10)

2
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Fig. 1. One dimensional functionally graded plate. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Please note that when referring to wave propagation in FGM plates, we use the term longitudinal waves. In this paper, we
make the assumption of a high-frequency approximation. Based on the WKB solution (see Appendix B), it can be shown
that the longitudinal wave speed (Eq. (10)) corresponds to the spatially dependent phase velocity of the longitudinal
waves inside the plate. By combining Eqs. (6), (7), and (10), we can express the respective phase velocity as follows:

cph(x) =

√
EI[1 + aV (x)](1 − ν)

ρI[1 + bV (x)](1 + ν)(1 − 2ν)
= cL0η (x) , (11)

where

cL0 =

√
EI(1 − ν)

ρI(1 + ν)(1 − 2ν)
, η(x) =

√
1 + aV (x)
1 + bV (x)

. (12)

We denote the function η(x) as the material function. Using this function, which we take as a baseline, it is possible to
express the corresponding volume fraction function as

V (a, b; x) =
η2(x) − 1
a − bη2(x)

. (13)

By combining Eq. (12) with the condition on the volume fraction function Eq. (4) we can further express the necessary
conditions on the material function η(x) as follows:

1. for a > b:

η(x) ∈

⟨
1,

√
1 + a
1 + b

⟩
, (14)

2. for b < a:

η(x) ∈

⟨√
1 + a
1 + b

, 1

⟩
. (15)

For the sake of generality let us introduce new dimensionless quantities

X =
x
ℓ

, H =
h
ℓ
. (16)

According to Eq. (11) the phase velocity of the longitudinal waves inside of the plate can then be written as

cph(X) = cL0 η(X) , (17)

or in its dimensionless form

Cph(X) =
cph(X)
cL0

= η(X) . (18)

Our objective is to identify a material function profile that satisfies the following criteria:

1. The effective phase velocity, which we will define later in the text, depends solely on a single parameter q.
2. The material function profile equals one at the both ends of the plate (η(0) = η(1) = 1) while also having zero

derivatives at these points to achieve maximum impedance match.

While there are various analytic functions that satisfy the two aforementioned conditions, we have chosen a simple one
for the sake of clarity and ease of interpretation. We made this choice because our objective is to demonstrate the validity
of the presented concept rather than to explore the entire class of possible functions. The selected function η(X) is given
by the following expression:

η(X) = 1 + q sin2(πX) , (19)

3
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Fig. 2. Profiles of the material function η(s) for various values of the dimensionless parameter q. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

where q is the control parameter mentioned above. The advantage of this particular function is that it provides
straightforward analytical expressions for the effective longitudinal velocity, as shown below. Example profiles for various
values of the parameter q are plotted in Fig. 2.

Based on the conditions on the material function (14) and (15) and by noting that the local extreme of the material
function happens at X = 1/2 and is equal to η(1/2) = 1 + q we can express the necessary conditions on the parameter
q as

1. for a > b:

q ∈

⟨
0,

√
1 + a
1 + b

− 1

⟩
, (20)

2. for b < a:

q ∈

⟨√
1 + a
1 + b

− 1, 0

⟩
. (21)

The effective phase velocity, denoted by Ceff, represents the velocity necessary for a homogeneous plate with the same
length as the FGM plate to maintain the same travel time for an edge-to-edge wave. Therefore, we can express it in its
dimensionless form as

Ceff =
1∫ 1

0
dX

Cph(X)

. (22)

By combining Eqs. (18), (19) and (22) we obtain the following expression

Ceff(q) =

√
1 + q . (23)

The inverse formula of Eq. (23) then reads as

q = C2
eff − 1 . (24)

It is worth noting that the effective phase velocity is solely dependent on the parameter q.
Based on Eqs. (19), (20) and (21), we can observe that in the case of a > b the effective phase velocity in the FGM

plate Ceff > 1 and vice versa.

4. Focusing and deflecting of elastic P-waves by a parallel plate FGM GRIN structure

In this section, we introduce a gradient refractive index (GRIN) structure that utilizes functionally graded materials
to focus and deflect P-waves. The structure is composed of FGM plates, as described in Section 2, that are layered in
parallel along the Y direction (Y = y/ℓ) and sandwiched between two homogeneous half-spaces. Both half-spaces have

4
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Fig. 3. Parallel plate FGM GRIN structure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

the P-wave velocity cP equal to a constant value (see e.g., [20]):

cP =

√
EI(1 − ν)

ρI(1 + ν)(1 − 2ν)
≡ cL0 , (25)

or in its dimensionless form CP = cP/cL0 = 1, see Fig. 3.
Here, L = 1 represents the dimensionless length of the plate and H represents its thickness, both of which are explained

in Section 2. G denotes the dimensionless width of the gap between two adjacent plates, while each individual plate is
assigned an index n, with n = 0 representing the middle plate that coincides with the X axis. The dimensionless effective
longitudinal velocity in the nth plate is denoted as Ceff,n and is determined by the choice of the parameter q, as given by
Eq. (23).

In this paper, we consider a plane time-harmonic P-wave propagating in the X direction. As the wave encounters the
structure, it splits into multiple partial longitudinal waves that travel through each plate. The difference in the effective
longitudinal velocities of the corresponding plates causes the partial waves to reach the outlet at different times. This
property can be leveraged to design the structure to e.g., focus waves onto a specific point or deflect the resulting beam (as
discussed in the subsequent sections). It is worth noting that the material function at the edges of each plate, as discussed
in Section 2, should have a unit value and zero derivatives to maximize impedance matching with the homogeneous
half-spaces (CL(X = 0) = CL(X = 1) = CP) and thereby increase the transmission through the entire structure.

In the following sections, we will delve into the two specific cases of wave manipulation. It is noteworthy that the
techniques employed in these cases are essentially the same as those used in GRIN optics (as seen in, for example, [31,32]),
particularly when utilizing GRIN (flat) lens that enable us to manipulate the phase and direction of light.

4.1. P-wave focusing

In this section, we illustrate the potential use of the previously described structure as a lens with a focal point located
at a specific point on the X axis, at a distance X = F from the origin (refer to Fig. 4). To achieve this, we must ensure that
the time required for each partial wave to travel to the focal point is constant, denoted by the dimensionless constant τ .
This can be achieved by the following distribution of the effective longitudinal velocities (see Fig. 4)

Ceff,n =
1

τ −
√
Y 2
n + F 2

, (26)

where

Yn = n(H + G) (27)

stands for the center position of the nth plate on the Y axis. The constant τ must be chosen carefully in order to meet the
constraints (20) and (21). In addition, it should be mentioned that the parameter τ determines the properties of how FGM
changes with spatial coordinate in individual plates. Based on Eq. (24) one can then compute the corresponding values
of q for each plate.

4.2. P-wave deflection

Another possibility of what we can realize using this type of structure is deflecting the wave-front of the incident P-
wave by an angle α, see Fig. 5. To reach this goal we use the following distribution of the effective longitudinal velocities

5
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Fig. 4. Focusing parallel plate FGM GRIN structure. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. Deflecting parallel plate FGM GRIN structure. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

corresponding to the individual plates

Ceff,n =
1

τ − Yn sin(α)
, (28)

where (by analogy with the preceding case) τ denotes the dimensionless time needed for the wave to travel from the
beginning of the FGM plate to the deflected waveform. Again, the condition expressed by Eqs. (20) and (21) must be
fulfilled.

Numerical simulations exemplifying and verifying the two cases of P-waves manipulations are given in Section 5.
To conclude this section, there are two important points to note. Firstly, the wave manipulation scenarios that can be

achieved using the structure we have proposed are not limited to the cases we have studied thus far. For example, it is
possible to combine both approaches and focus the waves into a point off the symmetry axis. Secondly, our approach is
applicable across a wide range of frequencies, provided that the high-frequency limit is met (as discussed in Appendix B).
This is because the proposed wave manipulation is frequency independent. In the following section, we provide examples
to demonstrate that this claim is justified.

5. Numerical results

For the sake of the following examples let us introduce a dimensionless frequency F defined as

F =
ℓ

cL0
f , (29)

where f represents the frequency. The following examples use MI - Aluminum (Al) and MII - Alumina (Al2O3) as the
primary materials with the following material parameters

EI = 70GPa , ρI = 2700 kgm−3 , EII = 393GPa , ρII = 3960 kgm−3 . (30)

The corresponding values of a and b are

a = 4.61 , b = 0.47 . (31)

Based on Eq. (20) the parameter q can then take on the values

q ∈ ⟨0, 0.95⟩ . (32)

The length of the FGM plates is ℓ = 0.21m. The corresponding dimensionless geometric parameters of the GRIN structure
are H = 4.8 · 10−2 (1 cm) and G = 2.4 · 10−3 (0.5 mm). In order to verify the theory presented above, in this section
we provide some of the results computed in COMSOL Multiphysics 5.5, employing the Elastic Waves (solid mechanics)
interface in the frequency domain and two dimensions. Note, that with this setup the full Navier–Lamé equation is
simulated (i.e. a possible influence by S-waves, the wave conversion etc. are present in the following results).
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Fig. 6. Numerical simulation of the focusing parallel plate GRIN structure for P-waves. Distribution of the Young’s modulus and the density (a),
dimensionless volumetric strain at F = 3.47 (b) and F = 4.18 (c). Colorbar ranges (blue to red): ⟨69, 258⟩GPa (E); ⟨2700, 3483⟩ kgm−3 (ρ); ⟨−1, 1⟩
(normalized volumetric strain). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

The uniform displacement was prescribed at the beginning of the FGM plates in the direction of their axes, thus
emulating the impinging plane P-wave. On the lateral sides of the FGM plates we included the boundary conditions used
in the derivation of the model Eq. (37), see Appendix A. The sides of the domain emulating the free half-space are supplied
by the Comsol’s Low reflecting boundary conditions. It was checked that the solution is mesh-independent (starting from
12 quadratic serendipity elements per shortest wavelength and an appropriate refinement around the corners). To account
for the symmetry, all numerical calculations were performed in 2D.

Since we are interested in P-waves propagation, the natural variable to be evaluated is not the general displacement
vector field u but rather its divergence ∇ · u, i.e. the volumetric strain. As the wave propagation problem is linear, the
plots are in arbitrary units without the loss of generality.

For the sake of generality, we give the results in dimensionless form. Reference dimensional values for aluminum are
given for definiteness. First, we demonstrate results of the wave focusing lens based on the effective phase velocity Ceff
distribution provided by Eq. (26), where the focal length F = 1.43 (0.3 m). The structure is shown in Fig. 6(a), where the
colors represent the Young’s modulus and the density values. The volumetric strain of the wave traveling through this
structure is presented in Figs. 6(b) (for F = 3.47, 100 kHz in aluminum) and 6(c) (for F = 4.18, 120 kHz in aluminum).
In the theoretical high-frequency limit, the lens should behave independently on the choice of F , which corresponds with
the presented results, where the differences of the focal lengths are negligible.

Next, we present the wave deflecting structure subject to effective phase velocity distribution defined by Eq. (28) with
the deflection angle of π/6. Similarly to the previous case, Fig. 7(a) represents the Young’s modulus and the density
distribution in the deflecting structure and Figs. 7(b), 7(c) display the volumetric strain corresponding to F = 3.47
(100 kHz in aluminum), F = 4.18 (120 kHz in aluminum), respectively. Once again, we observe very similar results
as far as the deflect angle.

6. Discussion

To begin, we want to highlight that it is achievable to design a structure capable of controlling P-waves without
relying on FGM techniques. This can be accomplished by employing uniform plates with constitutive material properties
that match the desired effective velocity of longitudinal waves Ceff. Our initial numerical experiments indicate that this
approach is effective. The overall energy losses, attributed to the discrepancy in wave velocity between the uniform plates
and the free half-space, were roughly 15%–20% (measured at the focal point). However, while this homogeneous plate
solution may appear straightforward compared to FGM, it is impractical. To achieve wave deflection or focusing, a wide
range of materials with precisely tailored properties would be required. In contrast, FGM materials can be effectively
composed of just two distinct materials.

The same scenario as depicted in Fig. 6 was calculated for a wide range of frequencies. To provide a clear demonstration
of the dispersion effects, which are consistent with the outcomes obtained via the WKB method, we conducted the
following numerical simulation. The volumetric strain on the centerline passing through the focal point was stacked for
every frequency to form a normalized 2D plot (see Fig. 8). It is apparent that for lower frequencies the focal point is slightly
shifted from the intended position (marked by the dashed line in Fig. 8). However, it quickly converges with increasing
dimensionless frequency. Hence, the approximate expression for the longitudinal wave phase velocity (see Eq. (48)) for
F > 3 is admissible.

7



A. Krpensky, V. Hruska and M. Bednarik Wave Motion 122 (2023) 103208

Fig. 7. Numerical simulation of the deflecting parallel plate GRIN structure for P-waves. Distribution of the Young’s modulus and the density (a),
dimensionless volumetric strain at F = 3.47 (b) and F = 4.18 (c). Colorbar ranges (blue to red): ⟨69, 353⟩GPa (E); ⟨2700, 3875⟩ kgm−3 (ρ); ⟨−1, 1⟩
(normalized volumetric strain). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8. Forming of the focal point at F = 1.43 for various dimensionless frequencies F . The depicted variable is the volumetric strain magnitude at
the centerline Y = 0 scaled by 1/F and normalized. The dashed line shows the intended focal point. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Since our research was focused on manipulation of the elastic P-waves, only a ∇ ·u was plotted in the previous figures.
In reality, at the interface between the plates and the homogeneous half-space S-waves are also generated mainly due
to impedance mismatch. In Fig. 9, one can see the comparison between the P-waves (∇ · u) and S-waves (∇ × u) for the
focusing case (a) and the deflecting case (b) at F = 4.18.

7. Conclusions

Our research demonstrates that functionally graded materials (FGMs), represented by an array of thin inhomogeneous
plates, can be used to construct P-wave manipulating GRIN structures. By designing suitable profiles of longitudinal
velocities within each plate, our proposed method is effective across a broad frequency range. We have presented several
examples of wave manipulation, including focusing and deflection, and supported our theoretical reasoning through
numerical simulations based on the full Navier–Lamé equation. We have also highlighted that the FGM approach is more
practical than using homogeneous plates due to the extensive range of materials required by the latter. Furthermore, we
have justified the neglect of dispersion effects based on the WKB method.
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Fig. 9. Comparison of the P-waves and S-waves in the case of focusing (a) and deflecting (b) GRIN structure at F = 4.18. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

In our paper, we initially made the assumption that the materials on both sides of the GRIN structure were the same
(MI). Consequently, we proposed a straightforward material function profile that optimized the impedance match on both
interfaces. However, it is crucial to highlight that our proposed method can also be applied when the two materials on
either side of the structure differ. The only modification required in such cases is the adoption of a different material
function profile, which (again) can be controlled by one or more suitable parameters and ensures impedance matching
on both sides. The procedure to follow then remains identical.

Although our main intention was to present a method for manipulating P-waves using a flat GRIN structure in order
to extend the existing methods used for this purpose, we believe that there will be interested parties among the scientific
community who will build upon our work and utilize it for specific application purposes.
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Appendix A. Derivation of the model equation

In Fig. 10, we observe an isotropic thin plate positioned on the x–y plane, with its thickness extending in the z-direction.
To derive a model equation for the propagation of a longitudinal wave in the x-axis direction in a functionally graded
material, we start with the generalized Hooke’s law for isotropic materials that defines the strain tensor component εij
in terms of the stress tensor component σij (see e.g., [33]):

εij =
1

E(x)

[
(1 + ν)σij − νϑδij

]
, εij =

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, σij = σji , i, j, k = x, y, z , (33)

where E(x) is called the modulus of elasticity or Young’s modulus, which varies spatially, ν is referred to as Poisson’s ratio,
δij is the Kronecker delta, and ϑ = σxx + σyy + σzz is the trace of the stress tensor. Note that due to the relatively small
magnitude of the Poisson ratio ν, we neglect its spatial dependence and consider it to be constant.

In this study, we assume the plates to be thin. Further, we consider the propagation of longitudinal waves through a
plate that is constrained from motion in the width direction. Under this condition, the plate material is allowed to displace
in the wave propagation direction (x-direction) and the thickness direction (z-direction), but is arrested from motion in
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Fig. 10. Geometric specification of a isotropic thin plate.

the width direction (y-direction). As a result of the constraint on the plate’s motion, every point on the plate is prevented
from moving in the y-direction. Therefore, the displacement in the y-direction is assumed to be zero throughout the plate.
This condition can be expressed mathematically as follows (see e.g., [34,35]):

εxy = εyy = εzy = 0 . (34)

It should be noted that the constraint mentioned here is intrinsic to the scenario of an ‘‘infinite’’ plate, see e.g., [35]. In
this case, the strain in the width direction becomes zero due to the plate’s infinite width.

In general, the deformation field within a solid body can be represented by a vector u = (ux, uy, uz) = (u, v, w), where
u, v, and w represent the displacements in the x, y, and z directions, respectively. This vector describes the deformation
of the considered thin plate in a reduced form: u = (u(x, z, t), 0, w(x, z, t)).

If we use the condition for normal constraint, i.e., u · n = 0, where n is the unit normal vector to the walls of the
plate lying in the x–y plane (the upper and lower surfaces), then we get that w = 0, which implies that εzz = 0, see
e.g., [36–38]. Since the region is thin in the z direction it can be argued that the other nonzero stress components have
little variation with z (see e.g., [39]), thus εzx = εzy = 0 (now u(x, t)).

By applying the above-mentioned conditions and using the relationship between strain and stress tensor components
(33), we arrive at the following equations:

σxx =
E(x)(1 − ν)

(1 + ν)(1 − 2ν)
εxx , σyy =

E(x)ν
(1 + ν)(1 − 2ν)

εxx , σzz =
E(x)ν

(1 + ν)(1 − 2ν)
εxx , σyx = σzx = σzy = 0 . (35)

If we assume that body forces are negligible and take into account the relations given in Eq. (35), we can express the
equation of motion for the ux = u component of the displacement vector u as follows:

ρ(x)
∂2u(x, t)

∂t2
=

∂σxx

∂x
. (36)

By substituting σxx from Eq. (35) into the equation of motion and considering that εxx = ∂u/∂x, we obtain the following
equation for longitudinal waves in an inhomogeneous thin plate after some manipulation:

∂2u(x, t)
∂x2

+
1

E(x)
dE(x)
dx

∂u(x, t)
∂x

=
1

c2L (x)
∂2u(x, t)

∂t2
, (37)

where the longitudinal wave speed is (see, e.g. [40])

cL(x) =

√
E(x)(1 − ν)

ρ(x)(1 + ν)(1 − 2ν)
. (38)

Appendix B. WKB solution of the model equation

In this section we derive an approximate analytical solution of the model Eq. (37) for the high frequency limit
employing the WKB method, see e.g., [41].

Let us assume a time harmonic solution to the model Eq. (37) of the following form

u(x, t) = A exp
(
i
∫ x

0
k(x̃)dx̃ − iωt

)
, (39)

where A is an integration constant, i =
√

−1 is the imaginary unit, ω the angular frequency and k(x) represents a spatially
dependent wavenumber defined as

k(x) =
∂ϕ(x, t)

∂x
, (40)
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where ϕ(x, t) = arg[u(x, t)]. By inserting the solution (39) into Eq. (37) we arrive at

ik′(x) − k2(x) + i
E ′(x)
E(x)

k(x) +
ω2

c2L (x)
= 0 , (41)

where the comma ′
≡ d/dx. Based on the relations (6) and (7), the velocity for longitudinal waves (38) can be expressed

as

cL(x) =

√
E(x)(1 − ν)

ρ(x)(1 + ν)(1 − 2ν)
=

√
EI[1 + aV (x)](1 − ν)

ρI[1 + bV (x)](1 + ν)(1 − 2ν)
= cL0η (x) , (42)

where

cL0 =

√
EI(1 − ν)

ρI(1 + ν)(1 − 2ν)
, η(x) =

√
1 + aV (x)
1 + bV (x)

. (43)

By substituting this formula into Eq. (41) we arrive at

ik′(x) − k2(x) + i
E ′(x)
E(x)

k(x) + k20ζ
2(x) = 0 , (44)

where ζ (x) = 1/η(x) and k0 = ω/cL0. Assuming the following series expansion of the wavenumber

k(x) = k0k1(x) + k2(x) +
k3(x)
k0

+
k4(x)
k20

+ . . . (45)

and substituting into Eq. (44) we arrive at the following system of equations (corresponding to the coefficients of the
respective powers of k0)

ζ 2(x) − k21(x) = 0 ,

i
E ′(x)
E(x)

k1(x) + ik′

1(x) − 2k1(x)k2(x) = 0 ,

...

(46)

By solving this system of equations we arrive at

k1(x) = ±ζ (x) , k2(x) =
i
2

(
E ′(x)
E(x)

+
ζ ′(x)
ζ (x)

)
. (47)

Assuming the high frequency limit we can then approximate the expression (45) as

k(x) ≈ k0k1(x) + k2(x) = ±k0ζ (x) +
i
2

(
E ′(x)
E(x)

+
ζ ′(x)
ζ (x)

)
. (48)

After substituting this expression for the wavenumber into Eq. (39) then after some algebra we obtain the following
expression for the approximate analytical WKB solution of the model equation

u(x, t) =
A

√
E(x)ζ (x)

exp
(

±i
∫ x

0
k0ζ (x̃)dx̃ − iωt

)
, (49)

where the signs + and - represent the two waves traveling in the positive x direction and the negative x direction,
respectively. From the expression (49), we can calculate the spatially dependent phase speed of a wave traveling in the
positive x direction (by choosing the sign + in the expression (49)) as

cph(x) = ω

(
∂ϕ(x, t)

∂x

)−1

=
ω

k0ζ (x)
≡

ω

k(x)
= cL(x) =

√
E(x)(1 − ν)

ρ(x)(1 + ν)(1 − 2ν)
. (50)

Note that this result represents an approximation and is only valid for the high-frequency limit.
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3.5 Paper V

Title: Exact analytical solution for shear horizontal wave propagation through
locally periodic structures realized by viscoelastic functionally graded materials

The fifth paper published in Composite Structures deals with the propagation
of shear horizontal (SH) elastic waves in locally periodic inhomogeneous vis-
coelastic FGMs (see Sec. 2.5). The term shear refers to a type of bulk elastic
waves whose particles oscillate perpendicular to the direction of propagation
(in contrast to the P-waves defined in the previous section). The coordinate
system is then oriented such that the corresponding wave vector (indicating
the direction of propagation of the corresponding plane wave) lies in the
(without the loss of generality) x − z plane and the designation horizontal
in this context means that the particles oscillate along the y direction. Now
we assume a locally periodic inhomogeneous FGM structure whose density
and shear modulus (note that the shear modulus plays a similar role for
the SH-waves as the Young modulus for the P-waves) vary continuously
along the z axis (in this case oriented horizontaly, whereas the x axis is
oriented vertically) according to the locally periodic material function (see
Eq. (2.80)) expressed by the square of the sine function (shifted vertically).
The corresponding model equation of the Webster-type (see Sec. 2.2) is then
derived describing the popagation of SH waves in such a media including the
viscoelastic losses.

Please note that for the sake of readability, the further steps will now be
stated in a slightly different order than is presented in the paper itself. The
model equation in this case can be transformed to the canonical form of the
Heun equation (see Sec. 2.1) and therefore the corresponding solution in
the first period can be expressed by the local Heun functions. The so called
continuation technique is also presented in order to deal with a singular point
of the Heun equation lying in the respective interval. The solution is then
extended to the whole FGM by employing the Floquet-Bloch theory (see Sec.
2.4), resulting in an exact analytical solution to the model equation for the
whole locally periodic FGM structure. Based on the Floquet-Bloch theory
the Bloch phase is defined determining the frequency bands in which the
inhomogeneous structure acts like a band-stop filter (the incident plane wave
is almost perfectly reflected). By assuming a homogeneous halfspace on both
sides of the FGM structure, a plane SH-wave incident to the structure at a
general angle of incidence from the left and further specifying the boundary
conditions the transmission and reflection coefficients are defined. In order
to better understand the behaviour of the derived analytical solution the
wave splitting method is applied enabling us to split the solution into the
two parts - one propagating to the right (in the positive sence of the z axis)
and the other to the left. By this technique, we are also able to express the

75
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reflection coefficient at any given point of the FGM structure and not only
at the left side where the incoming plane SH-wave is incident. Lastly, the
Riccati equation is derived for the reflection coefficient which has to be solved
numerically and serves as tool to verify the correctness of the found exact
analytical solutions.

In the next part of the paper, the reflection coefficient as a function of the
frequency is first plotted for two specifically chosen materials of the FGM
structure, two angles of incidence and including the viscoelastic losses. By
comparison with the numerical solution of the corresponding Riccati equation
the correctness of the found exact analytical solutions is verified. For the
simplicity of further calculations, the losses are neglected hereinafter. Next,
the right and the left going solutions obtained via the wave splitting method
are plotted for two frequencies - one chosen inside of the stop band and
the other lying outside, enabling us to better understand of how the waves
behave inside of the locally periodic FGM structure. Lastly, the transmission
coefficients are plotted for fixed first material and various second materials of
the FGM, whereas the stop-bands corresponding to each one of the second
materials are located at different frequencies with different bandwidths in
the respective graph of the transmission coefficient. Therefore, the second
material can be utilized as one of the control parameters of the FGM structure
when using it as a filter. It should also be noted that we assumed the profile of
the material function the same for each one of the specific calculations in this
paper. But it itself contains two additional control parameters that can also
be varied and therefore further studies can be conducted in order to assess the
influence of those parameters on the behaviour of the transmission/reflection
coefficient of the respective FGM structure.
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A B S T R A C T

The paper presents a novel comprehensive exact analytical solution for modeling linear shear-horizontal
(SH) wave propagation in an isotropic inhomogeneous layer made of functionally graded material, using
local Heun functions. The layer is a composite of two materials with varying properties represented by
spatial variations following the square of the sine function. The Voigt–Kelvin model is used to account for
material losses. The study focuses on SH waves incident at a specific angle and employs the wave splitting
technique to analyze forward and backward waves, facilitating the computation of reflection and transmission
coefficients at any point in the inhomogeneous structure. The proposed solution utilizes the periodic nature
of material functions and employs the Floquet–Bloch theory to derive an exact analytical solution. This
approach is particularly suited for cases where SH waves encounter locally periodic functionally graded
material. A Riccati equation-based verification is conducted to compare the frequency-dependent modulus of
the reflection coefficient obtained from the analytical solution with numerically solved results. The presented
work provides a comprehensive and versatile analytical solution for studying linear SH wave propagation in
locally inhomogeneous isotropic layers, contributing to the theoretical understanding of elastic wave fields and
practical applications.

1. Introduction

The SH waves have received considerable attention in the field of
guided ultrasonic non-destructive testing and evaluation due to their
unique characteristics, such as weak dispersion and the presence of
only one directional displacement, see e.g., [1–3]. These properties
make it an ideal candidate for various applications, including defect
detection and characterization in structures. Guided SH wave devices
have also gained significant interest for their potential use in high-
sensitivity chemical and biochemical sensors in liquid environments,
see e.g., [4,5] These devices offer several advantages, such as high
sensitivity, real-time monitoring capabilities, and the ability to detect
low concentrations of analytes. Consequently, they have the potential
to revolutionize fields such as environmental monitoring, biomedical
research, and food safety testing. The propagation of SH waves in
anisotropic laminated plates was studied e.g., in [6].

The propagation of plane elastic SH waves through an isotropic
inhomogeneous layer is a crucial topic of both scientific and practical
significance. To better understand the behavior of these waves in ma-
terials with varying properties, it is helpful to have access to analytical

∗ Corresponding author.
E-mail address: antonin.krpensky@fel.cvut.cz (A. Krpensky).

solutions for the corresponding governing equations. The need for such
solutions is evident in various scientific fields, including geophysics,
where studying the propagation of waves through the Earth can provide
insights into its internal structure. Additionally, these solutions can
aid in exploring materials located beneath the Earth’s surface [7].
There has been considerable attention given to the propagation of
seismic waves through inhomogeneous half-spaces with varying elastic
properties, as well as the scattering of these waves by different types of
heterogeneities with scale lengths comparable to the wavelength [8]. In
addition, material-property inhomogeneities can arise due to tempera-
ture gradients in various materials, and these scenarios have also been
studied [9,10]. The issue of SH wave propagation through inhomoge-
neous media also plays an important role in new imaging techniques
(see e.g. [11]).

The primary goal of FG composites is to combine the best mechan-
ical properties of two or more materials into a single material with
mechanical properties that surpass those of any constituent material
alone. As a result of their exceptional properties, FG materials are
increasingly being used in a variety of devices, as evidenced by recent

https://doi.org/10.1016/j.compstruct.2023.117539
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research, see e.g., [12,13]. A comprehensive array of articles is avail-
able, delving into the analysis of FG plates, beams, and shells. Notable
references include [14–18]. Certain studies delve deeper into the realm
of nonlinear analysis for these FG plates, as demonstrated by [19,20].
Additionally, research endeavors extend to the domain of elastic wave
propagation within FG plates and beams, as evident in [21,22].

SH waves can be used to detect defects, such as cracks or voids,
in FG materials, enabling quality control and preventing catastrophic
failure, see e.g. [23].

When the mechanical impedances of two media are mismatched,
elastic waves are partly reflected at their interface. Research has inves-
tigated the use of FG materials to achieve this purpose, as exemplified
in the study [24]. In various engineering and scientific applications,
controlling or minimizing the reflected waves is frequently required,
and FG materials are often utilized for this purpose. This is particularly
crucial in sensor applications [25,26] and in cloaking thin plates [27,
28].

Elastic waves offer a promising means for material characterization
of FG materials. However, for their effective use, it is crucial to have a
good understanding of wave propagation in FG materials [29–31].

Elastic wave phenomena in composite materials and structures play
a crucial role in designing new devices. Phononic crystals based on FG
materials are among them, and designing an optimal phononic crystal
is a complex task that requires a deeper understanding of elastic waves
in such locally periodic structures [32–34].

As the material properties in inhomogeneous isotropic materials
are functions of spatial coordinates, wave propagation represents a
problem that is generally difficult to analyze without employing nu-
merical methods. Such methods are discussed in detail in previous
research [35,36]. However, to understand wave processes in inhomoge-
neous isotropic materials, it is desirable to know the exact analytical so-
lutions of the corresponding model equations. Several approximate an-
alytical methods are utilized, including the Wentzel–Kramers–Brillouin
(WKB) method (see e.g., [37,38]), series expansion method [39], and
Green’s function approach method [40,41]. Unfortunately, to the best
of the authors’ knowledge, only a few publications present exact solu-
tions for various material-property profiles [7,31,42–45].

The primary objective of this study is to introduce a comprehen-
sive and exact analytical general solution for the linear elastodynamic
governing equation of SH waves propagating through a locally inho-
mogeneous isotropic layer at a chosen angle of incidence. The material
properties of the layer are described using a spatially-dependent peri-
odic material function. Furthermore, to incorporate losses, it is possible
to employ the Kelvin–Voigt model of the viscoelastic medium (see
e.g., [45,46]).

Since the transmission properties of locally periodic structures
(phononic crystals) are of interest from both theoretical and practical
perspectives, our intention is to utilize this exact analytical solution
for the considered inhomogeneous layer to find an exact analytical
solution for the locally periodic structure using the Floquet–Bloch
theory. To realize these objectives, our aim is to employ material
functions expressed as periodic spatial functions.

As the obtained exact solutions describe only the overall elastic
field, our further goal is to perform the separation of these solutions
into forward and backward displacement traveling waves using the
splitting method in the frequency domain. Forward and backward
waves allow for straightforward computation of reflection and trans-
mission coefficients for any point within the inhomogeneous structure
and additionally enable the investigation of wave distribution within
this structure.

To validate the found solutions, we plan to derive the Riccati equa-
tion for this purpose, which can be easily solved numerically. Based
on this numerical solution, we will compute the reflection coefficient,
which will subsequently be compared with the analytically computed
reflection coefficient.

Fig. 1. Inhomogeneous isotropic layer sandwiched between two half-spaces I and II.

The paper is organized as follows. Firstly, in Section 2, the govern-
ing equation for the elastic SH wave in an inhomogeneous viscoelastic
layer is introduced. Next, in Section 3, the wave splitting method is em-
ployed to obtain forward and backward traveling displacement waves.
Then, in Section 4, the Riccati equation for numerical computation
of the reflection coefficient is derived. Section 5 provides an exact
analytical solution for the goniometric material function based on Heun
functions. In Section 6, the analytic continuation of the general solution
of Heun’s equation is discussed to obtain the general solution for Bloch
waves. Section 7 focuses on the calculation of reflection coefficients
for various case studies and the investigation of SH wave behavior in
locally periodic structures. The analytical results are compared with
numerical solutions based on the Riccati equation. Finally, in Section 8,
the paper concludes with a summary of the findings. To make the
paper more accessible, Appendix A outlines some features of the Heun’s
differential equation and its solutions, while Appendix B provides an
overview of the Floquet theory used in the analysis.

2. Model equation

In this section, a model equation describing the propagation of SH
waves in an inhomogeneous layer represented by an FG material is
presented. This layer has a width of 𝑊 in the direction of propagation
(direction of the 𝑧 axis.), and it is unbounded in the remaining direc-
tions. The layer is sandwiched between two half-spaces, I and II, which
are filled with homogeneous material, as shown in Fig. 1. Half-space
I is filled with material characterized by parameters 𝜇𝐼 and 𝜌𝐼 , while
half-space II is filled with material characterized by parameters 𝜇𝐼𝐼 and
𝜌𝐼𝐼 .

For the two-dimensional case of small-amplitude SH waves propa-
gating in the 𝑥 − 𝑧 plane (see Fig. 1), displacement only occurs in the
𝑦-direction (anti-plane SH wave motion, i.e. u = (0, 𝑢(𝑥, 𝑧, 𝑡), 0), where
u stands for the displacement vector and we can write the equation of
motion for isotropic inhomogeneous medium without body forces as
(see e.g., [32,33,37–39,44–46]):
𝜕𝜏𝑦𝑥(𝑥, 𝑧, 𝑡)

𝜕𝑥
+

𝜕𝜏𝑦𝑧(𝑥, 𝑧, 𝑡)
𝜕𝑧

= 𝜌(𝑧) 𝜕
2𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑡2
, (1)

where 𝜌(𝑧) is the density and the two shear stresses are

𝜏𝑦𝑥(𝑥, 𝑧, 𝑡) = �̂�
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑥
, 𝜏𝑦𝑧(𝑥, 𝑧, 𝑡) = �̂�

𝜕𝑢(𝑥, 𝑧, 𝑡)
𝜕𝑧

. (2)

Here �̂� represents the operator of the position-dependent shear modulus
including the viscoelastic losses for which the Kelvin–Voigt model is
employed (see e.g., [45,46]):

�̂� = 𝜇s(𝑧) + 𝜇v
𝜕
𝜕𝑡

, (3)

where 𝜇s(𝑧) is the storage shear modulus and 𝜇v is the viscosity.
Substituting the shear stresses into Eq. (1) we obtain

𝜕
𝜕𝑥

[
�̂�
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑥

]
+ 𝜕

𝜕𝑧

[
�̂�
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑧

]
= 𝜌(𝑧) 𝜕

2𝑢(𝑥, 𝑧, 𝑡)
𝜕𝑡2

. (4)
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By assuming a time harmonic wave of the form

𝑢(𝑥, 𝑧, 𝑡) = �̃�(𝑥, 𝑧) exp (−j𝜔𝑡) , (5)

where j =
√
−1 is the imaginary unit and 𝜔 the angular frequency, the

operator �̂� now becomes just

𝜇(𝑧) = 𝜇s(𝑧) − j𝜔𝜇v . (6)

Eq. (4) can then be expressed as

𝜕2�̃�(𝑥, 𝑦)
𝜕𝑥2

+ 𝜕2�̃�(𝑥, 𝑦)
𝜕𝑧2

+ 1
𝜇(𝑧)

d𝜇(𝑧)
d𝑧

𝜕�̃�(𝑥, 𝑧)
𝜕𝑧

+ 𝜔2 𝜌(𝑧)
𝜇(𝑧)

�̃�(𝑥, 𝑧) = 0 . (7)

It should be noted that at the boundaries between the inhomogeneous
layer and the homogeneous media I and II, the continuity condition
must be ensured for both the displacement vector and the stress tensor.
Therefore, we can employ the separation (see Fig. 1)

�̃�(𝑥, 𝑧) = ̃̃𝑢(𝑧) exp

(
j
𝑘𝐼 sin 𝜃i√
1 − j𝜒

𝑥

)
, (8)

where 𝜃i is the angle of incidence, see Fig. 1, 𝑘𝐼 = 𝜔∕𝑐𝐼 , 𝑐𝐼 =
√
𝜇𝐼∕𝜌𝐼

and 𝜒 = 𝜔𝜇v∕𝜇𝐼 , where the subscript 𝐼 means that the material
properties are related to the region I, we can express Eq. (7) as

d2 ̃̃𝑢(𝑧)
d𝑧2

+ 1
𝜇(𝑧)

d𝜇(𝑧)
d𝑧

d ̃̃𝑢(𝑧)
d𝑧 +

[
𝜔2 𝜌(𝑧)

𝜇(𝑧)
−

𝑘2𝐼 sin
2 𝜃i

1 − j𝜒

]
̃̃𝑢(𝑧) = 0 . (9)

For convenience, we rewrite Eq. (9) in its dimensionless form:

d2𝑈 (𝑠)
d𝑠2

+ 1
�̃�(𝑠)

d�̃�(𝑠)
d𝑠

d𝑈 (𝑠)
d𝑠 +

[
𝐾2

𝐼
𝜉(𝑠)
�̃�(𝑠)

− 𝜘2
]
𝑈 (𝑠) = 0 . (10)

Here

𝑠 = 𝑧
𝓁
, 𝑈 =

̃̃𝑢
𝓁
, 𝐾𝐼 = 𝑘𝐼𝓁 , 𝜘2 =

𝐾2
𝐼 sin

2 𝜃i
1 − j𝜒 , 𝜂(𝑠) =

𝜇s(𝑠)
𝜇𝐼

,

𝜉(𝑠) = 𝜌(𝑠)
𝜌𝐼

, 𝜇(𝑠) = 𝜇𝐼 (𝜂(𝑠) − j𝜒) = 𝜇𝐼 �̃�(𝑠) , (11)

where 𝓁 is a characteristic length.
Eq. (10) represents the model equation for which an exact analyt-

ical solution will be sought for the chosen spatial dependence of the
respective material parameters.

3. Wave splitting method

We will use the wave splitting method in the frequency domain (see
e.g., [47]) to separate the overall displacement field 𝑈 (𝑠) (see Eq. (53))
into forward 𝑈+(𝑠) and backward 𝑈−(𝑠) traveling displacement waves.
The wave splitting method is described in more detail e.g., in [48].
Therefore, here we just outline the use of this method.

Taking the derivative of Eq. (2) by time we obtain
𝜕𝜏𝑦𝑧(𝑥, 𝑧, 𝑡)

𝜕𝑡
= �̂�

𝜕�̇�(𝑥, 𝑧, 𝑡)
𝜕𝑧

. (12)

Using Eqs. (5) and (8) we can write

𝜏𝑦𝑧(𝑥, 𝑧, 𝑡) = ̃̃𝜏(𝑧) exp

(
j
𝑘𝐼 sin 𝜃i√
1 − j𝜒

𝑥 − j𝜔𝑡
)

, (13)

𝜕𝑢(𝑥, 𝑧, 𝑡)
𝜕𝑡

≡ �̇�(𝑥, 𝑧, 𝑡) = −j𝜔̃̃𝑢(𝑧) exp

(
j
𝑘𝐼 sin 𝜃i√
1 − j𝜒

𝑥 − j𝜔𝑡
)

=

̇̃̃𝑢(𝑧) exp

(
j
𝑘𝐼 sin 𝜃i√
1 − j𝜒

𝑥 − j𝜔𝑡
)

. (14)

Employing Eqs. (13) and (14) we can rewrite Eq. (12) as

− j𝜔 ̃̃𝜏(𝑧) = 𝜇(𝑧)d
̇̃̃𝑢(𝑧)
d𝑧 (15)

that can be written in the following form using dimensionless quantities

d�̇� (𝑠)
d𝑠 = −

j𝜔
�̃�(𝑠)

𝑇 (𝑠) , (16)

where �̇� = ̇̃̃𝑢∕𝓁 and 𝑇 = ̃̃𝜏∕𝜇𝐼 .
Based on Eq. (14) we can write that

�̇� (𝑠) = −j𝜔𝑈 (𝑠) . (17)

Using Eq. (17) we can rewrite Eq. (10) as

d𝑇 (𝑠)
d𝑠 = −j𝜔

[
𝓁2

𝑐2𝐼

(
𝜉(𝑠) −

�̃�(𝑠) sin2 𝜃i
1 − j𝜒

)]
�̇� (𝑠) . (18)

Recall that

𝑇 (𝑠) = �̃�(𝑠)d𝑈 (𝑠)
d𝑠 . (19)

We can now express Eqs. (16) and (18) in the matrix form (representing
the Cauchy formalism) as follows:

d
d𝑠

(
𝑇 (𝑠)
�̇� (𝑠)

)
=
⎛⎜⎜⎜⎝

0 −j𝜔
[
𝓁2

𝑐2𝐼

(
𝜉(𝑠) − �̃�(𝑠) sin2 𝜃i

1−j𝜒

)]

− j𝜔
�̃�(𝑠)𝑇 (𝑠) 0

⎞⎟⎟⎟⎠

(
𝑇 (𝑠)
�̇� (𝑠)

)
. (20)

The functions 𝑇 (𝑠) and �̇� (𝑠) are independent and constitute a complete
base of functions for the system of Eqs. (16) and (18).

The diagonalization can make the transition from the base of the
functions 𝑇 (𝑠) and �̇� (𝑠) to the base of the functions �̇�+(𝑠) and �̇�−(𝑠)
(see e.g., [48]), between which the following relation holds after nor-
malization(
�̇�+(𝑠)
�̇�−(𝑠)

)
= M

(
�̇� (𝑠)
𝑇 (𝑠)

)
, (21)

where

M =

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 𝑐𝐼

𝓁

√
�̃�(𝑠)

(
𝜉(𝑠)− �̃�(𝑠) sin2 𝜃i

1−j𝜒

)

1 𝑐𝐼

𝓁

√
�̃�(𝑠)

(
𝜉(𝑠)− �̃�(𝑠) sin2 𝜃i

1−j𝜒

)

⎞⎟⎟⎟⎟⎟⎟⎠

. (22)

Based on Eq. (21) we get

�̇�+(𝑠) =
1
2

⎛
⎜⎜⎜⎜⎝
�̇� (𝑠) −

𝑐𝐼

𝓁

√
�̃�(𝑠)

(
𝜉(𝑠) − �̃�(𝑠) sin2 𝜃i

1−j𝜒

)𝑇 (𝑠)

⎞
⎟⎟⎟⎟⎠
, (23)

�̇�−(𝑠) =
1
2

⎛⎜⎜⎜⎜⎝
�̇� (𝑠) +

𝑐𝐼

𝓁

√
�̃�(𝑠)

(
𝜉(𝑠) − �̃�(𝑠) sin2 𝜃i

1−j𝜒

)𝑇 (𝑠)

⎞⎟⎟⎟⎟⎠
, (24)

Using this relation and Eq. (19) we can adjust the expressions (23) and
(24) for the forward 𝑈+(𝑠) and backward 𝑈−(𝑠) displacements as

𝑈+(𝑠) =
1
2
[𝑈 (𝑠) +𝑄(𝑠, 𝜔)𝑇 (𝑠)] = 1

2

[
𝑈 (𝑠) + �̃�(𝑠)𝑄(𝑠, 𝜔)d𝑈 (𝑠)

d𝑠

]
, (25)

𝑈−(𝑠) =
1
2
[𝑈 (𝑠) −𝑄(𝑠, 𝜔)𝑇 (𝑠)] = 1

2

[
𝑈 (𝑠) − �̃�(𝑠)𝑄(𝑠, 𝜔)d𝑈 (𝑠)

d𝑠

]
, (26)

where

𝑄(𝑠, 𝜔) =
𝑐𝐼

j𝜔𝓁
√

�̃�(𝑠)
(
𝜉(𝑠) − �̃�(𝑠) sin2 𝜃i

1−j𝜒

) =
𝜇𝐼

j𝜔𝓁
√

𝜇(𝑠)𝜌(𝑠) − 𝜌𝐼𝜇(𝑠)�̃�(𝑠) sin2 𝜃i
1−j𝜒

.

(27)

By summing Eqs. (25) and (26) we get the overall displacement field

𝑈 (𝑠) = 𝑈+(𝑠) + 𝑈−(𝑠) . (28)

Furthermore, the following holds

𝑇+(𝑠) =
𝑈+(𝑠)
𝑄(𝑠, 𝜔)

, 𝑇−(𝑠) = −
𝑈−(𝑠)
𝑄(𝑠, 𝜔)

. (29)

From here

𝑇 (𝑠) = 𝑇+(𝑠) + 𝑇−(𝑠) . (30)
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4. The Riccati equation

The model Eq. (10) can be expressed using the relation (19) as

d
d𝑠

(
�̃�(𝑠)d𝑈 (𝑠)

d𝑠

)
=
(
−𝐾2

𝐼 𝜉(𝑠) + 𝜘2�̃�(𝑠)
)
𝑈 (𝑠) . (31)

From Eq. (31) we can derive the Riccati equation with the help of
which it is then relatively easy to numerically calculate the reflection
coefficient

(𝑠, 𝜔) =
𝑈−(𝑠)
𝑈+(𝑠)

. (32)

Please note that in the notation of the functions 𝑈 (𝑠) and 𝑇 (𝑠), we
have omitted the explicit dependence on the parameter 𝜔 for better
readability hereinafter.

For this purpose, we introduce the impedance as

𝑍(𝑠, 𝜔) =
𝜇𝐼
𝓁

𝑇 (𝑠)
�̇� (𝑠)

. (33)

Using the relations (17) and (19) we can express the impedance as
follows

𝑍(𝑠, 𝜔) =
𝜇𝐼

−j𝜔𝓁
�̃�(𝑠)d𝑈 (𝑠)

d𝑠
𝑈 (𝑠)

. (34)

From here we get

d𝑈 (𝑠)
d𝑠 =

−j𝜔𝓁𝑍(𝑠)𝑈 (𝑠)
𝜇(𝑠)

. (35)

By using Eqs. (11) and (35) we get the following Riccati equation for
the impedance from Eq. (31)

d𝑍(𝑠, 𝜔)
d𝑠 =

j𝜔𝓁
𝜇(𝑠)

𝑍2(𝑠, 𝜔) − j𝜔𝓁𝜌(𝑠) +
j𝜔𝓁𝜇(𝑠) sin2 𝜃i
𝑐2𝐼 (1 − j𝜒)

. (36)

Based on the relations (27)–(30) we can express the impedance (33)
using the reflection coefficients (32) as

𝑍(𝑠, 𝜔) =
𝜇𝐼

−j𝜔𝓁𝑄(𝑠)
𝑈+(𝑠) − 𝑈−(𝑠)
𝑈+(𝑠) + 𝑈−(𝑠)

=

√
𝜇(𝑠)𝜌(𝑠) −

𝜌𝐼𝜇(𝑠)�̃�(𝑠) sin2 𝜃i
1 − j𝜒

(𝑠, 𝜔) − 1
(𝑠, 𝜔) + 1

. (37)

From this relation, we can then determine the necessary initial condi-
tion 𝑍(𝑠 = 𝑠0, 𝜔) for solving the Riccati equation (36).

Based on Eq. (37) we can express the reflection coefficient as

(𝑠, 𝜔) =

√
𝜇(𝑠)𝜌(𝑠) − 𝜌𝐼𝜇(𝑠)�̃�(𝑠) sin2 𝜃i

1−j𝜒 −𝑍(𝑠, 𝜔)
√

𝜇(𝑠)𝜌(𝑠) − 𝜌𝐼𝜇(𝑠)�̃�(𝑠) sin2 𝜃i
1−j𝜒 +𝑍(𝑠, 𝜔)

. (38)

into which we insert the solution of the Riccati equation (36).

5. The exact analytical solution of the model equation

In this paper we assume a FG layer (plate) fabricated from the two
materials 𝑀𝐼 and 𝑀𝐼𝐼 in which the given material property 𝑃 is a
function of the individual material properties and the volume fractions
of the constituent materials (see e.g., [49]) expressed as

𝑃 = 𝑃𝐼𝑉𝐼 + 𝑃𝐼𝐼𝑉𝐼𝐼 , (39)

where 𝑃𝐼 and 𝑃𝐼𝐼 denote the properties of the respective materials and
𝑉𝐼 and 𝑉𝐼𝐼 represent the volume fractions of the constituent materials
that satisfy the following condition

𝑉𝐼 + 𝑉𝐼𝐼 = 1 . (40)

The material composition in the FG layer varies continuously only
along the thickness direction and denoting 𝑉𝐼𝐼 = 𝑉 (𝑠), based on

Eq. (40) we can write that 𝑉𝐼 = 1 − 𝑉 (𝑠) and therefore Eq. (39) takes
on the form

𝑃 (𝑠) = 𝑃𝐼𝐼𝑉 (𝑠) + 𝑃𝐼 [1 − 𝑉 (𝑠)] = 𝑃𝐼

[
1 +

𝑃𝐼𝐼 − 𝑃𝐼
𝑃𝐼

𝑉 (𝑠)
]
. (41)

By considering the volume function 𝑉 (𝑠) = sin2(𝑚𝑠 + 𝜙), where 𝑚 ≠ 0,
we can use Eq. (41) to express the material functions 𝜂(𝑠) and 𝜉(𝑠) as

𝜂(𝑠) = 1 +
𝜇𝐼𝐼 − 𝜇𝐼

𝜇𝐼
sin2(𝑚𝑠 + 𝜙) = 1 + 𝑎 sin2(𝑚𝑠 + 𝜙) , (42)

𝜉(𝑠) = 1 +
𝜌𝐼𝐼 − 𝜌𝐼

𝜌𝐼
sin2(𝑚𝑠 + 𝜙) = 1 + 𝑏 sin2(𝑚𝑠 + 𝜙) . (43)

After substituting the material functions (42) and (43) into Eq. (10) we
get

d2𝑈 (𝑠)
d𝑠2

+ 𝑎𝑚 sin(2(𝑚𝑠 + 𝜙))
1 − j𝜒 + 𝑎 sin2(𝑚𝑠 + 𝜙)

d𝑈 (𝑠)
d𝑠

+

[
𝐾2

𝐼
1 + 𝑏 sin2(𝑚𝑠 + 𝜙)

1 − j𝜒 + 𝑎 sin2(𝑚𝑠 + 𝜙)
− 𝜘2

]
𝑈 (𝑠) = 0 , (44)

By introducing the following substitution

𝜎 = sin2(𝑚𝑠 − 𝜙) (45)

it is possible to transform Eq. (44) into the Heun’s differential equation

d2𝑈
d𝜎2

+
(

1
2𝜎

+ 1
2(𝜎 − 1)

+ 1
𝜎 + (1 − j𝜒)∕𝑎

)
d𝑈
d𝜎

−
(𝐾2

𝐼 𝑏 − 𝜘2𝑎)𝜎 +𝐾2
𝐼 − 𝜘2(1 − j𝜒)

4𝑎𝑚2𝜎(𝜎 − 1)[𝜎 + (1 − j𝜒)∕𝑎]
𝑈 (𝜎) = 0 , (46)

which corresponds to its canonical form given as

d2𝑈
d𝜎2

+
(
𝛾
𝜎
+ 𝛿

𝜎 − 1
+ 𝜀

𝜎 − 𝑞

)
d𝑈
d𝜎 + 𝛼𝛽𝜎 − 𝑔

𝜎(𝜎 − 1)(𝜎 − 𝑞)
𝑈 (𝜎) = 0 , (47)

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜀 are generally complex exponent parameters that
satisfy the (Fuchsian) condition (see e.g. [50])

1 + 𝛼 + 𝛽 = 𝛾 + 𝛿 + 𝜀 . (48)

The parameter 𝑔 ∈ C is an accessory parameter which does not
influence the exponent parameters.

The general solution of Heun’s equation in the vicinity of the regular
singular point 𝜎0 = 0 can be written as (see e.g. (A.14))

𝑈 (𝜎) = 𝐴1𝐻𝓁(𝑞, 𝑔; 𝛼, 𝛽, 𝛾, 𝛿; 𝜎) +
𝐴2𝜎

1−𝛾𝐻𝓁 (𝑞, (𝑞𝛿 + 𝜖)(1 − 𝛾) + 𝑔; 𝛼 + 1 − 𝛾, 𝛽 + 1 − 𝛾,

2 − 𝛾, 𝛿; 𝜎) ≡
𝐴1𝐻𝓁(𝑞1, 𝑔1; 𝛼1, 𝛽1, 𝛾1, 𝛿1; 𝜎)
+𝐴2𝜎

1−𝛾1𝐻𝓁(𝑞2, 𝑔2; 𝛼2, 𝛽2, 𝛾2, 𝛿2; 𝜎) ≡
𝐴1𝐻11(𝜎) + 𝐴2𝜎

1−𝛾1𝐻12(𝜎) ; |𝜎| < 1 , (49)

where 𝐴1, 𝐴2 are integration constants and 𝐻𝓁 denotes the local Heun
function, see (A.8).

By comparing Eq. (46) with its canonical form (47) and employing
the condition (48) we get

𝛾 = 1
2
, 𝛿 = 1

2
, 𝜀 = 1 , 𝑔 =

𝐾2
𝐼 − 𝜘2(1 − j𝜒)

4𝑎𝑚2 , 𝑞 = −
1 − j𝜒

𝑎
, (50)

𝛼 + 𝛽 = 1 , 𝛼𝛽 = −
𝐾2

𝐼 𝑏 − 𝜘2𝑎

4𝑎𝑚2 . (51)

By solving the system of Eqs. (51) we can write

𝛼 = 1
2
+ 1

2

√
1 +

𝐾2
𝐼 𝑏 − 𝜘2𝑎

𝑎𝑚2 , 𝛽 = 1
2
− 1

2

√
1 +

𝐾2
𝐼 𝑏 − 𝜘2𝑎

𝑎𝑚2 . (52)

By substituting from the relations (45), (50) and (52) into the solution
(49) we obtain the general solution of Eq. (44):

𝑈 (𝑠) = 𝐴1𝐻𝓁
⎛⎜⎜⎝
−
1 − j𝜒

𝑎
,
𝐾2

𝐼 − 𝜘2(1 − j𝜒)
4𝑎𝑚2 , 1

2
+ 1

2

√
1 +

𝐾2
𝐼 𝑏 − 𝜘2𝑎

𝑎𝑚2 ,
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1
2
− 1

2

√
1 +

𝐾2
𝐼 𝑏 − 𝜘2𝑎

𝑎𝑚2 , 1
2
, 1
2
; sin2 (𝑚𝑠 + 𝜙)

⎞⎟⎟⎠
+

𝐴2 sin (𝑚𝑠 + 𝜙)𝐻𝓁

(
−
1 − j𝜒

𝑎
,
𝑚2(2𝑎 − (1 − j𝜒)) +𝐾2

𝐼 − 𝜘2(1 − j𝜒)
4𝑎𝑚2 ,

1 + 1
2

√
1 +

𝐾2
𝐼 𝑏 − 𝜘2𝑎

𝑎𝑚2 , 1 − 1
2

√
1 +

𝐾2
𝐼 𝑏 − 𝜘2𝑎

𝑎𝑚2 , 3
2
, 1
2
, sin2 (𝑚𝑠 + 𝜙)

⎞⎟⎟⎠
≡

𝐴1𝐻11(𝑠) + 𝐴2 sin (𝑚𝑠 + 𝜙)𝐻12(𝑠) ; sin2(𝑚𝑠 + 𝜙) < 1 . (53)

As the local Heun functions are evaluable only for arguments lying
in the interval [0, 1), the condition sin2(𝑚𝑠 + 𝜙) < 1 in Eq. (53) has to
be satisfied.

Note that for zero values of the argument of local Heun functions
and their derivatives, the following holds:

𝐻11(0) = 𝐻12(0) = 1 ,
(d𝐻11(𝑠)

d𝑠

)

𝑠=0
= 𝑚 sin(𝜙)

𝑔1
𝛾1𝑞1

and
(d𝐻12(𝑠)

d𝑠

)

𝑠=0
= 𝑚 sin(𝜙)

𝑔2
𝛾2𝑞2

. (54)

Note, for example, that the mathematical software Maple (version 10
and higher) and Mathematica (version 12 and higher) can be used to
evaluate the local Heun functions and their derivatives.

6. Analytic continuation of the general solution of Heun’s equa-
tion and Bloch waves

Given our objectives, it may be necessary to determine the solution
of the Heun equation for the 𝜎 = 1 case, which cannot be obtained
using the local Heun functions. To do so, it will be necessary to extend
the general solution and its derivatives to cover this scenario through
analytic continuation.

To resolve the problem the following variable transformation

�̃� = 1 − 𝜎 (55)

is used. This means that the neighborhood of 𝜎 = 1 is transformed into
the neighborhood of 𝜎 = 0. Using the transformation (55) the Heun’s
Eq. (47) with the parameters (𝑞, 𝑔, 𝛼, 𝛽, 𝛾, 𝛿) can be rewritten into the
following form:

d2𝑈
d�̃�2

+
(
�̃�
�̃�
+ 𝛿

�̃� − 1
+ �̃�

�̃� − 𝑞

)
d𝑈
d�̃� + �̃�𝛽�̃� − �̃�

�̃�(�̃� − 1)(�̃� − 𝑞)
𝑈 (�̃�) = 0 , (56)

where

𝑞 = 1 − 𝑞 , �̃� = 𝛼𝛽 − 𝑔 , �̃� = 𝛼 , 𝛽 = 𝛽 , 𝛿 = 𝛾 , �̃� = 𝛿 . (57)

The general solution of Eq. (56) is

𝑈 (�̃�) = �̃�1𝐻𝓁
(
𝑞, �̃�; �̃�, 𝛽, �̃� , 𝛿; �̃�

)
+

�̃�2�̃�
1−�̃�𝐻𝓁

(
𝑞, (𝑞𝛿 + �̃�)(1 − �̃�) + �̃�; �̃� + 1 − �̃� , 𝛽 + 1 − �̃� , 2 − �̃� , 𝛿; �̃�

)
,

|�̃�| < 1 , (58)

where 𝑀 and 𝑁 are the integration constants. This solution also
represents the solution of the model Eq. (47) around the singular point
𝜎 = 1 (including this point).

Substituting from the relations (45) into the solution (58) we can
write the general solution of Eq. (44) as

𝑈 (𝑠) = �̃�1𝐻𝓁
(
𝑞, �̃�; �̃�, 𝛽, �̃� , 𝛿; cos2(𝑚𝑠 + 𝜙)

)
+

�̃�2 cos(𝑚𝑠 + 𝜙)𝐻𝓁
(
𝑞, (𝑞𝛿 + �̃�)(1 − �̃�) + �̃�; �̃� + 1 − �̃� , 𝛽 + 1 − �̃� ,

2 − �̃� , 𝛿; cos2(𝑚𝑠 + 𝜙)
)

≡ �̃�1𝐻21(𝑠) + �̃�2 cos(𝑚𝑠 + 𝜙)𝐻22(𝑠) , cos2(𝑚𝑠 + 𝜙) < 1 , (59)

In what follows, we shall make the assumption that the characteristic
length is equivalent to the width of the inhomogeneous layer being
studied, i.e. 𝓁 = 𝑊 .

In general, it is not possible to obtain a general solution to Eq. (44)
over the entire interval 𝑠 ∈ [0, 1] using only Eq. (53). This is because
every point 𝑠𝑛 = (𝜋∕2 − 𝜙 + 𝑛𝜋)∕𝑚 (𝑛 ∈ Z) represents a singular point,
where the solution based on local Heun functions does not converge.
To address this issue, Eq. (58) must also be used in the vicinity of
these singular points. Additionally, the integration constants must be
calculated to ensure that the solution is continuous and smooth. This
situation is illustrated in Fig. 2, assuming 𝑚 = 𝜋 and 𝜙 = 0 for the rest
of this paper, where the singular point is at 𝑠 = 1∕2. Therefore, the
solution must be divided into three parts for the respective intervals
[0, 𝑠1), [𝑠1, 𝑠2), [𝑠2, 1], where 𝑠1 ∈ (0; 1∕2) and 𝑠2 ∈ (1∕2; 1). The two
linearly independent solutions of Eq. (44) can then be expressed as

𝑣(𝑠) =

⎧
⎪⎪⎨⎪⎪⎩

𝐻11(𝑠); 0 ≤ 𝑠 < 𝑠1 ,

𝑀11𝐻21(𝑠) +𝑁11 cos(𝜋𝑠)𝐻22(𝑠) 𝑠1 ≤ 𝑠 < 𝑠2 ,

𝑀11𝐻12(𝑠) +𝑁12 sin(𝜋𝑠)𝐻12(𝑠) 𝑠2 ≤ 𝑠 ≤ 1 .

(60)

𝑤(𝑠) =

⎧⎪⎪⎨⎪⎪⎩

sin(𝜋𝑠)𝐻12(𝑠)∕𝜋; 0 ≤ 𝑠 < 𝑠1 ,

𝑀21𝐻21(𝑠) +𝑁21 cos(𝜋𝑠)𝐻22(𝑠) 𝑠1 ≤ 𝑠 < 𝑠2 ,

𝑀22𝐻12(𝑠) +𝑁22 sin(𝜋𝑠)𝐻12(𝑠) 𝑠2 ≤ 𝑠 ≤ 1 .

(61)

where the integration constants 𝑀𝑖𝑗 (𝐾𝐼 , 𝑎, 𝑏) and 𝑁𝑖𝑗 (𝐾𝐼 , 𝑎, 𝑏) are cal-
culated such that both the functions 𝑣(𝑠) and 𝑤(𝑠) are continuous and
smooth as mentioned above. Note that the integration constants 𝑀𝑖𝑗
and 𝑁𝑖𝑗 do not depend on 𝑠1 and 𝑠2.

The functions 𝑣(𝑠) and 𝑤(𝑠) represent the normalized solution of
Eq. (44) and it holds for them that

𝑣(0) = 1 , 𝑣′(0) = 0 , 𝑤(0) = 0 , 𝑤′(0) = 1 , (62)

where the prime represents the derivative with respect to 𝑠.
The general solution of Eq. (44) can then be expressed as

𝑈 (𝑠) = 𝐴𝑣(𝑠) + 𝐵𝑤(𝑠) , 𝑠 ∈ [0, 1] , (63)

where 𝐴 and 𝐵 are integration constants.
To gain insight into the behavior of elastic waves in locally periodic

structures, such as a finite phononic crystal composed of 𝑁 repetitions
of a basic unit cell (see Fig. 3), the Floquet theory can be employed. This
powerful approach allows us to express the general solution of Eq. (44)
in terms of Bloch waves, as explained in Appendix B. Specifically, the
Floquet multiplicators can be expressed as follows:

𝜆1,2 =
ℎ ±

√
ℎ2 − 4
2

, (64)

where ℎ = 𝑣(1) +𝑤′(1). Then the following applies for the Bloch waves
in the first cell (i.e. for 𝑠 ∈ [0, 1]):

𝐹1,2(𝑠) = 𝑣(𝑠) +
𝜆1,2 − 𝑣(1)

𝑤(1)
𝑤(𝑠) , (65)

see Eq. (B.11). According to the basic property of the Bloch waves (see.
Eq. (B.5)) the Bloch waves in the whole crystal (i.e. 𝑠 ∈ [0, 𝑁]) can then
be expressed as

1,2(𝑠) = 𝜆⌊𝑠⌋1,2𝐹1,2(𝑠 − ⌊𝑠⌋) , (66)

where ⌊𝑠⌋ represents the greatest integer less than or equal to 𝑠. Hence,
the general solution of Eq. (44) for the whole crystal can be written as
a linear combination of the two Bloch waves:

𝑈 (𝑠) = 𝐶1(𝑠) +𝐷2(𝑠) , 𝑠 ∈ [0, 𝑁] , (67)

where 𝐶 and 𝐷 are the integration constants.
To describe the propagation of waves in both the forward and back-

ward directions, we can use the functions 𝑈+(𝑠) and 𝑈−(𝑠), respectively.
These functions can be expressed using the relations (25) and (26) as

𝑈±(𝑠) =
1
2
[
𝐶1(𝑠) +𝐷2(𝑠) ± 𝜂(𝑠)𝑄(𝑠)(𝐶 ′

1(𝑠) +𝐷 ′
2(𝑠))

]
, 𝑠 ∈ [0, 𝑁] .

(68)
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Fig. 2. Mutual coupling of solutions at points 𝑠1 and 𝑠2.

Fig. 3. Phononic crystal composed of 𝑁 FG material cells.

7. Computation of selected quantities and verification of found
analytical solutions

To calculate the reflection and transmission coefficients, we must
determine the integration constants 𝐶 and 𝐷 in Eq. (68). We can
assume a plane wave of unit amplitude approaching the crystal from
the left in the following form:

𝑈i = exp
⎡
⎢⎢⎣
j𝐾𝐼

√
1 − sin2(𝜃i)

1 − j𝜒 𝑠
⎤
⎥⎥⎦
, (69)

where 𝜃i is the angle of incidence, see Fig. 1.
The integration constants 𝐶 and 𝐷 can be determined by solving the

following system of equations (representing the boundary conditions,
see Section 2):

1 +0 = 𝑈 (𝑠 = 0) , (70)

j𝐾𝐼

√
1 − sin2(𝜃i)

1 − j𝜒 (1 −0) = 𝑈 ′(𝑠 = 0) , (71)

𝑈−(𝑠 = 𝑁) = 0 , (72)

where 0 is the reflection coefficient at 𝑠 = 0. The first two equations,
(70) and (71), represent the continuity conditions for the wave solution
at 𝑠 = 0. The third equation, (72), must also hold since the reflection
coefficient at 𝑠 = 𝑁 must be equal to 0, as both the density and the
shear modulus are continuous and have zero derivative at this point.
Solving this system of equations gives us the integration constants
𝐶 and 𝐷, and completes the wave solution for the entire problem.
The general spatially and frequency dependent reflection (𝑠, 𝜔) and
transmission  (𝑠, 𝜔) coefficients can now be expressed as

(𝑠, 𝜔) =
𝑈−(𝑠)
𝑈+(𝑠)

,  (𝑠, 𝜔) =
𝑈+(𝑠)
𝑈+(0)

, 𝑠 ∈ [0, 𝑁] , (73)

whereas (0, 𝜔) ≡ 0 from Eqs. (70) and (71).
The reflection coefficient (𝑠0, 𝜔), where 𝑠0 ∈ [0, 1], is calculated

based on the relation (73) and represents the reflection coefficient
inside the FG layer at 𝑠0 (for more information, refer to e.g., [51]).

To demonstrate the correctness of the found exact analytical solu-
tion, the frequency dependencies of the reflection coefficient moduli
at the point 𝑠 = 0 for FG material (𝑀𝐼 = Al, 𝑀𝐼𝐼 = Al2O3) are
compared in Figure Fig. 4. Both normal incidence (Fig. 4(a)) and
oblique incidence (Fig. 4(b)) are considered. These dependencies are
calculated analytically based on Eq. (73) and also numerically based
on the Riccati equation (36) substituted into Eq. (38). The numerical
solution of the Riccati equation has been obtained using the standard
Runge–Kutta–Fehlberg method (RKF45).

From this comparison, it is evident that both the analytical and
numerical results are identical.

Table 1
Material properties of considered constituents.

Al Ni Al2O3 ZrO2
Aluminium Nickel Alumina Zirconia

𝜇𝐼 (GPa) 30 75 150 70
𝜌𝐼 (kg m−3) 2700 8880 3960 5700
𝑐𝐼 =

√
𝜇𝐼∕𝜌𝐼 (m s−1) 3333 2906 6155 3504

In order to clearly observe the formation of forbidden bands and
the consequences arising from the Floquet–Bloch theory, we will not
consider losses in the following part of the text, i.e., 𝜒 = 0.

In Fig. 5, the frequency dependencies of both the reflection co-
efficient and transmission coefficients are plotted for two different
angles of incidence, namely 𝜃i = 0◦ and 𝜃i = 45◦. The figures are
complemented by the absolute values of the cosine of the Bloch phase
(B.3). The regions where | cos(𝜁 )| > 1 represent the forbidden bands
(band gaps). These bands are highlighted in gray color in the figures.

Based on the comparison of Figs. 4 and 5, it can be observed that
the inclusion of losses leads to a decrease in the values reached by the
reflection coefficient module for individual frequencies. Additionally,
in the regions corresponding to the forbidden bands, the dependence
of the reflection coefficient module on frequency is asymmetric when
considering losses.

In Fig. 6, spatial dependencies of the absolute, real, and imaginary
values of the forward 𝑈+(𝑠) and backward 𝑈−(𝑠) displacement waves
in the phononic crystal are captured for a frequency 𝑓 = 25 kHz
located within the bandgap. From the figure, it can be observed that
for this case, Re[𝑈+(𝑠)] = −Im[𝑈−(𝑠)] and Im[𝑈+(𝑠)] = −Re[𝑈−(𝑠)]. This
implies that |(𝑠)| = 1 for 𝑠 ∈ [0, 10]. Once the frequency is chosen
outside of the bandgap, the aforementioned equality between the real
and imaginary components no longer holds, as shown in Fig. 7.

Fig. 8 shows the spatial dependencies of the absolute, real, and
imaginary values of the shear stress 𝑇 (𝑠) within the phononic crystal
for two frequencies. One frequency (25 kHz) is situated within the band
gap, while the other is located outside this band (40 kHz), see Fig. 5.
The shear stress is analytically computed using Eq. (19).

In Fig. 9, it is shown how the frequency dependence of the transmis-
sion coefficient module of a phononic crystal can be influenced by the
choice of material 𝑀𝐼𝐼 used to fabricate the FG material, while keeping
the same geometric parameters (length of the crystal and number of
considered units). It is evident that the choice of FG materials not only
affects the position of the bandgaps but also their width. The material
parameters of the used materials are given in Table 1.

8. Conclusion

Our paper aimed to find an exact analytical solution of the model
equation that is expressed using the local Heun functions and describes
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Fig. 4. Comparison of the frequency dependencies of the reflection coefficient moduli at the point 𝑠 = 0 for FG material (𝑀𝐼 = Al, 𝑀𝐼𝐼 = Al2O3, see Table 1) calculated via the
numerical solution of the Riccati equation (36) (dotted red line) with the analytical solution based on the relation (73) (solid blue line); 𝑁 = 10, 𝑊 = 0.1m, 𝜇v = 5 ⋅ 104 Pa s−1. (a)
𝜃i = 0◦, (b) 𝜃i = 20◦.

Fig. 5. Frequency dependencies of the reflection (solid black line) and transmission (solid blue line) coefficient moduli at the point 𝑠 = 0 for FG material (𝑀𝐼 = Al, 𝑀𝐼𝐼 = Al2O3,
see Table 1) calculated based on the relations (73) and corresponding cosines of Bloch phases (B.3) (red line); 𝑁 = 10, 𝑊 = 0.1m, 𝜒 = 0. (a) 𝜃i = 0◦, (b) 𝜃i = 45◦.

Fig. 6. Spatial dependencies of absolute, real, and imaginary values of the forward 𝑈+(𝑠) and backward 𝑈−(𝑠) displacement waves within a phononic crystal (𝑀𝐼 = Al, 𝑀𝐼𝐼 = Al2O3)
for a frequency located within the forbidden band; 𝑓 = 25 kHz, 𝑁 = 10, 𝑊 = 0.1m, 𝜒 = 0, 𝜃i = 0◦.

Fig. 7. Spatial dependencies of absolute, real, and imaginary values of the forward 𝑈+(𝑠) and backward 𝑈−(𝑠) displacement waves within a phononic crystal (𝑀𝐼 = Al, 𝑀𝐼𝐼 = Al2O3)
for a frequency outside the forbidden band; 𝑓 = 40 kHz, 𝑁 = 10, 𝑊 = 0.1m, 𝜒 = 0, 𝜃i = 0◦.
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Fig. 8. Spatial dependencies of absolute, real, and imaginary values of the shear stress 𝑇 (𝑠) within a phononic crystal (𝑀𝐼 = Al, 𝑀𝐼𝐼 = Al2O3) for two frequencies outside the
forbidden band; 𝑁 = 10, 𝑊 = 0.1m, 𝜒 = 0, 𝜃i = 0◦. (a) 𝑓 = 25 kHz (inside the forbidden band) (b) 𝑓 = 40 kHz (outside the forbidden band).

Fig. 9. Frequency dependencies of the transmission (blue line) coefficient moduli at the point 𝑠 = 0 for three FG materials calculated based on the relation (73) and corresponding
cosines of Bloch phases (B.3) (red line); 𝑁 = 10, 𝑊 = 0.1m, 𝜒 = 0, 𝜃i = 0◦. (a) Al → Al2O3, (b) Al → Ni (c) Al → ZrO2 (see Table 1).

the propagation of linear shear horizontal (SH) waves through an
isotropic inhomogeneous layer realized with functionally graded (FG)
material, which is a composite of two chosen materials. We considered
the scenario where SH waves impinge on the inhomogeneous layer at
a specified angle of incidence. The Kelvin–Voigt model was employed
to express the losses in the material. The spatial dependence of the
material parameters in the propagation direction was formulated using
material functions corresponding to the square of the sine function. We
selected the trigonometric form of these material functions not only
for solvability purposes but also because their periodic nature enables
modeling of locally periodic structures, such as phononic crystals.

To obtain the solution for the inhomogeneous layer, we employed
a transformation technique to convert the model equation into Heun’s
differential equation. This allowed us to express the solution as a linear
combination of local Heun functions, with their arguments confined to
the open interval (−1, 1). However, to achieve a solution that covers the
entire spatial period of the material functions (i.e., arguments within
the closed interval [−1, 1]), we employed an analytic continuation
technique through translational transformation. This approach yielded
a modified solution providing an exact analytical solution across the
entire interval.

Moreover, we employed the wave splitting method in this article
to separate the overall displacement field 𝑈 (𝑠) into forward 𝑈+(𝑠)
and backward 𝑈−(𝑠) traveling displacement waves. This enabled us to
describe the behavior of SH waves within the inhomogeneous layer (FG
material) and calculate both the reflection and transmission coefficients
at any point within the inhomogeneous medium.

The periodic nature of the material functions was relatively straight-
forwardly utilized to find an exact general analytical solution using the
Floquet–Bloch theory for the case where an SH wave is incident on a
locally periodic FG material at a chosen angle.

To facilitate the verification of the obtained exact analytical solution
for the locally periodic structure, we derived the Riccati equation
for the introduced impedance from the given model equation. By
numerically solving this equation, we were able to readily compute
the reflection coefficient at the desired point and frequency. The ver-
ification process involved comparing the frequency dependency of
the modulus of the reflection coefficient obtained from the numerical
solution with the result obtained using the exact analytical solution for
the considered locally periodic structure. It should be noted that the
derived Riccati equation can also be used for other material functions.

Subsequently, we demonstrated the utilization of the obtained ex-
act analytical solution and the approach based on the wave splitting
method in selected computations to analyze the behavior of SH waves
in a locally periodic structure. To facilitate comprehension of the text,
we provided notes in the Appendix of our article concerning the solu-
tion of the Heun’s differential equation and the utilized Floquet–Bloch
theory.

In contrast to a number of previously published exact analytical so-
lutions that consider different material functions, the presented solution
is not limited to the very specific case where the material functions for
shear modulus and mass density are equal, which results in a constant
propagation velocity. The found general analytical solution can be used
not only for calculating the transmission properties of locally periodic
structures but can also be applied with various boundary conditions as
needed for the solved problems, for example, for Love surface waves.
The solution presented by us can be used not only for studying the
behavior of SH waves in locally periodic structures but can also serve
as a benchmark for various numerical solutions. In our work, we
demonstrated that through a suitable transformation, the solved prob-
lem can be reduced to solving the Heun’s differential equation, which
progressively finds broader application in various areas of physics.
Building upon our work, it is possible to further reduce the problem
to solving the Heun’s differential equation for other material functions,
for example, expressed using hyper-geometric functions.

The fundamental outcomes of our work can be summarized as
follows. We presented a new comprehensive general solution of the
model equation describing the propagation of linear harmonic SH
waves in a locally inhomogeneous isotropic layer. Using the Floquet–
Bloch theory, we have applied this solution to the case where the
inhomogeneous medium is represented by a locally periodic structure.
We have demonstrated how, in the frequency domain, this solution can
be separated into forward and backward displacement traveling waves
using the wave splitting method. This method can be straightforwardly
employed not only for computing reflection and transmission coeffi-
cients at any point within the considered inhomogeneous structure but
also for studying elastic fields within this structure.

Furthermore, we derived the Riccati equation, which can be rela-
tively easily solved numerically. Consequently, this equation allows us
to calculate the transmission properties of the considered inhomoge-
neous structure not only for the chosen material functions but also for
various other cases. Although our work is of a purely theoretical nature,
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our results and presented approaches can serve as a foundation not only
for further theoretical research but also for modeling various practical
needs, such as in geophysics or sensor design.

We expect that these presented results and the chosen approaches
will appeal to a broader professional public interested in the utilization
of FG materials for particularly influencing the transmission properties
of locally periodic structures.
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Appendix A. Heun’s equation and its solution

To ensure that this paper is self-contained, we provide an overview
of Heun’s equation and its degenerate forms in the Appendices.

Heun’s differential equation is the most general second-order differ-
ential equation with four regular singular points located at 𝑧 = 0, 1, 𝑎,∞
(where 𝑎 ≠ 0, 1,∞). The canonical form of the general second-order
Heun’s differential equation is:

d2𝑈
d𝑧2

+
( 𝛾
𝑧
+ 𝛿

𝑧 − 1
+ 𝜀

𝑧 − 𝑎

) d𝑈
d𝑧 + 𝛼𝛽𝑧 − ℎ

𝑧(𝑧 − 1)(𝑧 − 𝑎)
𝑈 (𝑧) = 0 , (A.1)

where {𝛼, 𝛽, 𝛾, 𝛿, 𝜀, ℎ} are parameters, generally complex and arbitrary,
linked by the Fuchsian constraint (see e.g. [50])

1 + 𝛼 + 𝛽 = 𝛾 + 𝛿 + 𝜀 . (A.2)

The parameter ℎ is referred to as an accessory (or auxiliary) parameter
since it falls outside the domain of the usual Riemann classification
scheme. In numerous applications, ℎ acts as an eigen-parameter and
does not influence the exponent parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜀. It is worth
noting that Heun’s equation is invariant under an interchange of pa-
rameters 𝛼 and 𝛽.

We can write Eq. (A.1) in the following form:

d2𝑈
d𝑧2

+ 𝑢(𝑧)d𝑈d𝑧 +𝑤(𝑧)𝑈 (𝑧) = 0 , (A.3)

which enables us to introduce the constants

𝑢0 = lim
𝑧→𝑧0

(𝑧 − 𝑧0)𝑢(𝑧) , (A.4)

𝑤0 = lim
𝑧→𝑧0

(𝑧 − 𝑧0)2𝑤(𝑧) . (A.5)

For the second order linear differential Eq. (A.3) we can write the
characteristic (indicial) equation (see e.g. [50]):

𝜆2 + (𝑢0 − 1)𝜆 +𝑤0 = 0 . (A.6)

Table A.2
The roots of the indicial equation of Heun’s differential equation.

Regular singular point Roots

0 0, 1 − 𝛾
1 0, 1 − 𝛿
𝑎 0, 1 − 𝜀
∞ 𝛼, 𝛽

The roots of characteristic Eq. (A.6) are the exponents which corre-
spond to the regular singular points. We can construct two linearly
independent solutions of Eq. (A.1) in the vicinity of the regular singular
point 𝑧0 if the roots 𝜆1, 𝜆2 of the characteristic Eq. (A.6) do not differ by
a positive integer1 𝑠 = 𝜆1 − 𝜆2 if 𝑅𝑒(𝜆1) ≥ 𝑅𝑒(𝜆2) (see e.g. [50,52]). The
two linearly independent solutions have different analytic properties at
𝑧 = 𝑧0. The two linearly independent solutions 𝑈1 and 𝑈2 of Eq. (A.3)
can be written in the form of the Frobenius series (see e.g. [50,52])

𝑈𝑘(𝜆𝑘; 𝑧) =
∞∑
𝑛=0

𝑐(𝜆𝑘)𝑛 (𝑧 − 𝑧0)𝑛+𝜆𝑘 , 𝑘 = 1, 2 , (A.7)

where the coefficients 𝑐(𝜆𝑘)𝑛 are calculated by means the three-term
recursion (A.11) and 𝜆1,2 are the roots of the indicial Eq. (A.6).

The solution for the regular singular point 𝑧0 = 0 is considered
fundamental because if it is not, a transformation of the independent
variable 𝑧 → 𝑧 − 𝑧0 can be applied to make it so.

To find a solution of Heun’s differential equation in the vicinity of
the regular singular point 𝑧0 = 0, we evaluate the limits (A.4) and (A.5),
which yield 𝑢0 = 𝛾 and 𝑤0 = 0. This solution is analytic for |𝑧| < 1, and
the corresponding characteristic Eq. (A.6) yields the roots 𝜆1 = 0 and
𝜆2 = 1 − 𝛾.

The roots of the characteristic equations for all regular singular
points are summarized in Table A.2 (see e.g., [50,52]).

The solution of Heun’s equation for 𝜆1 = 0 about the singular point
𝑧0 = 0, normalized to unity, is called the local Heun function and it is
usually denoted by 𝐻𝓁(𝑎, ℎ; 𝛼, 𝛽, 𝛾, 𝛿; 𝑧), i.e.

𝐻𝓁(𝑎, ℎ; 𝛼, 𝛽, 𝛾, 𝛿; 𝑧) ≡ 𝑈1(𝜆1; 𝑧) =
∞∑
𝑛=0

𝑐(𝜆1)𝑛 𝑧𝑛 , |𝑧| < 1 (A.8)

and its derivative (the prime local Heun function) is given as

d
d𝑧𝐻𝓁(𝑎, ℎ; 𝛼, 𝛽, 𝛾, 𝛿; 𝑧) ≡ 𝐻𝓁′(𝑎, ℎ; 𝛼, 𝛽, 𝛾, 𝛿; 𝑧) =

∞∑
𝑛=1

𝑛𝑐(𝜆1)𝑛 𝑧𝑛−1 , |𝑧| < 1 .

(A.9)

After substitution of the series (A.7) into Heun’s equation (A.3) we
obtain the following three-term recursion (see e.g. [52,53])

𝑐(𝜆𝑘)−1 = 0 , 𝑐(𝜆𝑘)0 = 1 , (A.10)

𝑐(𝜆𝑘)𝑛+1 = 𝐴𝑛𝑐
(𝜆𝑘)
𝑛 + 𝐵𝑛𝑐

(𝜆𝑘)
𝑛−1 = 0 , 𝑛 ≥ 0 , (A.11)

where

𝐴𝑛 =
(𝑛 + 𝜆𝑘)[(𝑛 + 𝜆𝑘 − 1 + 𝛾)(1 + 𝑎) + 𝑎𝛿 + 𝜀] + ℎ

𝑎(𝑛 + 𝜆𝑘 + 1)(𝑛 + 𝜆𝑘 + 𝛾)
,

𝐵𝑛 = −
(𝑛 + 𝜆𝑘 − 1 + 𝛼)(𝑛 + 𝜆𝑘 − 1 + 𝛽)

𝑎(𝑛 + 𝜆𝑘 + 1)(𝑛 + 𝜆𝑘 + 𝛾)
, 𝑘 = 1, 2 ; 𝜆1 = 0 ,

𝜆2 = 1 − 𝛾 . (A.12)

Using relations (A.10) and (A.11), we can compute the coefficients
of the local Heun function that corresponds to the first solution of
Heun’s equation when 𝑘 = 1. Similarly, we can use the recursive
relation for 𝑘 = 2 to obtain the second solution of Heun’s equation.

1 If both roots are identical, 𝜆1 = 𝜆2, only one solution is obtained.
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However, to simplify the process and use the recursion (A.11) for
the local Heun function, we can apply an F -homotopic transforma-
tion (elementary power transformation), as described in [52,53]. This
transformation leads to the following equality:

𝑈2(𝜆2; 𝑧) = 𝑧1−𝛾𝐻𝓁 (𝑎, (𝑎𝛿 + 𝜀)(1 − 𝛾) + ℎ; 𝛼 + 1 − 𝛾, 𝛽 + 1 − 𝛾, 2 − 𝛾,

𝛿; 𝑧) =

𝑧1−𝛾
∞∑
𝑛=0

𝑐(𝜆2)𝑛 𝑧𝑛 , |𝑧| < 1 , (A.13)

where it is assumed that 𝛾 is not an integer.
Accounting for the above mentioned facts, we can write the general

solution of Heun’s equation (A.1) as

𝑈 (𝑧) = 𝐶1𝐻𝓁(𝑎, ℎ; 𝛼, 𝛽, 𝛾, 𝛿; 𝑧) +

𝐶2𝑧
1−𝛾𝐻𝓁(𝑎, (𝑎𝛿 + 𝜀)(1 − 𝛾) + ℎ; 𝛼 + 1 − 𝛾, 𝛽 + 1 − 𝛾,

2 − 𝛾, 𝛿; 𝑧) , (A.14)

where 𝐶1 and 𝐶2 are integration constants.

Appendix B. Bloch waves within one-dimensional phononic crys-
tal

Because Eq. (10) is transitionally invariant, i.e., it is invariant under
a translation with 𝑑 = 1 along 𝑠, we can express 𝑈 (𝑠) within a
periodic phononic crystal based on the Floquet theory (see, e.g., [54–
56]). Before, we must define the notions of the characteristic equation
and characteristic exponent associated with Eq. (44). The characteristic
equation is:

𝜆2 − [𝑣(𝑑) +𝑤′(𝑑)]𝜆 + 1 = 0 , (B.1)

and the characteristic exponent (the Bloch wave number) 𝜅 is a number
that satisfies equations:

exp(±j𝜅𝑑) = 𝜆1,2 ⇒ 𝜆1𝜆2 = 1 , (B.2)

where 𝜆1,2 are the roots of characteristic Eq. (B.1).
It is clear that 𝜅𝑑 is defined up to an integer multiple of 2𝜋, and

based on the relation (B.2), we can write the Bloch phase 𝜁 as:

2 cos(𝜁 ) = 2 cos[𝜅(𝑘)𝑑] = 𝑣(𝑑) +𝑤′(𝑑) , (B.3)

which determines the band structure of the photonic crystal.
According to the Floquet theory, if roots 𝜆1 and 𝜆2 of character-

istic Eq. (B.1) differ from each other, then Eq. (44) has two linearly
independent solutions (see, e.g., [56]):

𝐹1,2(𝑠) = 𝑃1,2(𝑠) exp(±j𝜅𝑠) , (B.4)

where 𝐹1,2(𝑠) are the Bloch waves and 𝑃1,2(𝑠) are periodic functions with
the periodicity of the structure, i.e.,

𝑃1,2(𝑠 + 𝑑) = 𝑃1,2(𝑠) . (B.5)

According to Eqs. (B.4) and (B.5), the Bloch waves satisfy the transla-
tional property:

𝐹1,2(𝑠 + 𝑑) = 𝜆1,2𝐹1,2(𝑠) . (B.6)

The periodic functions 𝑃1,2(𝑠) represent the wave function behavior in-
side a single cell. The Bloch waves 𝐹1,2(𝑠) are one-dimensional traveling
waves of spatial frequency 𝜅 that are modulated in amplitude and phase
in a periodic manner by functions 𝑃1,2(𝑠). The complex exponential
components (exp(±j𝜅𝑠)) of the Bloch waves alone determine the net
changes in phase and amplitude from a position in one cell to the
corresponding position in a neighboring cell. The phase change is
given by Re(𝜅) and the amplitude change by Im(𝜅). Whereas 𝑃1,2(𝑠) are
periodic, 𝐹1,2(𝑠) are generally aperiodic. Only some degenerate cases
exist in which the Bloch waves are periodic.

Thus, for 𝜆1 ≠ 𝜆2, the general solution of Eq. (44) can be expressed
with the Bloch functions as:

𝑈 (𝑠) = 𝐹1(𝑠) +𝐹2(𝑠) . (B.7)

If 𝜆1 ≠ 𝜆2, the Bloch phase can be either real, i.e., | cos(𝜁 )| < 1, or
complex, i.e., | cos(𝜁 )| > 1. The Bloch phase is real in allowed bands
and complex in bandgaps (see, e.g., [55]).

If characteristic Eq. (B.1) has a double root 𝜆1 = 𝜆2 ≡ 𝜆 =
±1 (identical Bloch waves), then Eq. (44) has the following linearly
independent solutions:

𝐹 (𝑠) = 𝑃1(𝑠) exp(j𝜅𝑠) , (B.8)

and

𝐺(𝑠) = [𝑠𝑃1(𝑠) + 𝑃2(𝑠)] exp(j𝜅𝑠) . (B.9)

It is not difficult to ensure that solution 𝐺(𝑠) (the hybrid Floquet mode)
has the following translational property (see, e.g., [56]):

𝐺(𝑠 + 𝑑) = 𝜆𝐺(𝑠) + 𝜆𝑑𝐹 (𝑠) . (B.10)

The double root corresponds to bandedges, i.e., boundaries between
allowed bands and bandgaps and in this case | cos(𝜁 )| = 1.

For the considered photonic crystal, 𝑣′(𝑑) and 𝑣(𝑑) are never simul-
taneously zero in the investigated frequency range, which allows us to
express the Bloch waves as (see, e.g., [55,56]):

𝐹1,2(𝑠) = 𝑣(𝑠) +
𝜆1,2 − 𝑣(𝑑)

𝑤(𝑑)
𝑤(𝑠) , if 𝑣(𝑑) ≠ 0 , (B.11)

𝐹1,2(𝑠) = 𝑤(𝑠) +
𝜆1,2 −𝑤′(𝑑)

𝑣′(𝑑)
𝑣(𝑠) , if 𝑣′(𝑑) ≠ 0 . (B.12)

For 𝜆1 = 𝜆2 ≡ 𝜆 = ±1, the Bloch waves are identical, 𝐹1(𝑠) = 𝐹2(𝑠) ≡
𝐹 (𝑠), and the second linearly independent solution is:

𝐺(𝑠) = 𝜆𝑑
𝑤(𝑑)

𝑤(𝑠) , if 𝑤(𝑑) ≠ 0 , (B.13)

𝐺(𝑠) = 𝜆𝑑
𝑣′(𝑑)

𝑣(𝑠) , if 𝑣′(𝑑) ≠ 0 . (B.14)

In addition, in the investigated frequency range, apart from the band-
edges, 𝑣′(𝑑) ≠ 0 and 𝑤(𝑑)′ ≠ 0 are valid and enable us to employ only
Bloch waves (B.11).

In our case, it is easy to see that 𝑣(𝑑) = 𝑤′(𝑑). Thus, we can write
the cosine of the Bloch phase 𝜁 as cos(𝜁 ) = 𝑣(𝑑).
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3. Collection of publications ...............................
3.6 Paper VI:

Title: Willis couplings in continuously varying cross-sectional area duct

The sixth paper (and also the last one of the presented collection) pub-
lished in The Journal of the Acoustical Society of America returns back
from the topic of elastic waves to the acoustical ones. The main subject
of this research is an inhomogeneous axially symetric acoustic waveguide
(duct) section of a finite length and a continuously varying cross-sectional area
given by the respective functional dependence of the corresponding radius
of the waveguide represented by the function η (see Sec. 2.1). Since in this
paper we also include the viscothermal losses then both the density and the
compressibility of the air inside of the waveguide are also spatially dependent
on the respective coordinate.

The first step is (once again) to formulate the model equation, or in this
case the two first order model differential equations (but when those two are
combined they, again, reproduce the Webster-type equation as always). The
reason for why in this case we are using the two first order equations instead
of one second order equation is that the problem can now be formulated in the
space-state representation, whereas the state vector represents the pressure
and the volume velocity at the specified point and the state matrix describes
the spatial evolution of the state vector along the respective coordinate. The
key point is to express a linear relationship of the state vector at the left
side of the waveguide to the one at the right side, or in other words to find
the corresponding transfer matrix of the waveguide section. This is done
by a second order homogenization of the waveguide section realized by a
Peano-Baker expansion of the state matrix up to the second order, which is a
low frequency limit approximation in contrast to e.g., the WKB method (see
Sec. 2.3). Then by some further manipulation, we were able to derive the
effective propagation matrix of the waveguide containing three parameters:
the effective density and compressibility which correspond to the first order
of the approximation and the so called Willis coupling coefficients, which are
additional terms present due to the second order of the approximation. For
all of those parameters, the analytical expressions are given, but it should be
noted that they contain integral formulas which generally cannot be solved
analytically and therefore some numerical integration method needs to be
employed. The effective transfer matrix is then obtained from the propagation
matrix. It is noteworthy that if we were to assume a locally periodic structure
consisting of N such waveguide sections connected in series then the total
transfer matrix can be obtained simply by exponentiation of the effective
transfer matrix to the N -th power (this is not presented in the paper).
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...................................... 3.6. Paper VI:

Now the second part of the paper follows where the obtained results are
compared to the numerical results provided by the standardly used transfer
matrix method (TMM). First, the frequency limits of the approximation are
discussed. Next, the comprehensive comparison is made between the first
and the second order of the approximation (and the numerical results) for
various parameters of the waveguide, namely the reflection and transmission
coefficients and the impedances as seen from the left and the right side. Then,
the effective parameters given by the analytical expressions are compared to
the ones obtained via the TMM, whereas we can see a very good agreement
between the individual results in for the low frequencies (well below the
discussed limits). In the appendix, we also show that in the case of a
symmetrical profile of the radius function the Willis coupling coefficients
vanish.
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ABSTRACT:
Acoustic wave propagation in a one-dimensional periodic and asymmetric duct is studied theoretically and numeri-

cally to derive the effective properties. Closed form expressions for these effective properties, including the asym-

metric Willis coupling, are derived through truncation of the Peano–Baker series expansion of the matricant (which

links the state vectors at the two sides of the unit-cell) and Pad�e’s approximation of the matrix exponential. The

results of the first-order and second-order homogenization (with Willis coupling) procedures are compared with the

numerical results. The second-order homogenization procedure provides scattering coefficients that are valid over a

much larger frequency range than the usual first-order procedure. The frequency well below which the effective

description is valid is compared with the lower bound of the first Bragg bandgap when the profile is approximated by

a two-step function of identical indicator function, i.e., two different cross-sectional areas over the same length. This

validity limit is then questioned, particularly with a focus on impedance modeling. This article attempts to facilitate

the engineering use of Willis materials. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0020849
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I. INTRODUCTION

Since the seminal work of Willis in the 1980s,1 the epon-

ymous materials have received an increasing attention. This

increasing attention has even been exponential since their

experimental evidence or demonstration.2–4 The Willis cou-

pling parameters couple the potential and kinetic energy in

the acoustic conservation relations; therefore, enhancing the

ability to control waves in metamaterials compared to other

materials that do not exhibit such coupling. These parameters

have thus been employed to design and analyze PT sym-

metric,5 wave front shaping,6 or non-reciprocal7–9 systems.

Most of the works to date have focused on the physical ori-

gins,10 calculation,11–13 and enhancement14 of Willis cou-

pling, but only a few have focused on deriving a closed form

of these parameters15 to ease Willis material engineering use.

Effectively, various systems are asymmetric and can thus be

modeled as Willis materials. In this article, we will focus on

a one-dimensional (1D) periodic system, the properties of

which vary continuously in a periodic manner.

This system simply consists of a duct, the radius of

which varies continuously and periodically, leading to an

asymmetric profile. The acoustic wave propagation of such

a system has been extensively studied in the past, mostly for

two purposes: the acoustic wave propagation in horns16,17

and in corrugated ducts in the absence18 or in the presence19

of flow. The propagation of plane acoustic waves in ducts,

the cross-sectional area of which varies in space, is generally

based on the Webster equation. This equation is commonly

used to analyze and design mufflers, resonators, and other

types of acoustic filters for noise control applications,20,21 but

also in the analysis of musical instruments, such as flutes and

organ pipes, where the geometry of the instrument affects the

resonance frequencies and the sound quality.22 An accurate,

or at least a reasonably close, analytical solution for the

Webster equation is thus crucial to study the behavior of

sound waves in such systems. Several papers have been dedi-

cated to solving this equation.23–26 Although an approximate

analytical solution accounting for viscothermal losses has

been proposed,27 these losses that occur at the duct bound-

aries are often neglected. To our knowledge, any of the for-

mer articles were focused on deriving the effective properties

in such problems in the presence of viscothermal losses and

when the corrugation profile is asymmetric.

Inspired by Refs. 9, 15, and 28, the closed form expres-

sions of the effective properties, including the asymmetric

Willis coupling, describing the acoustic wave propagation in

a duct (the radius of which varies periodically and continu-

ously) are derived and analyzed. A related article was pub-

lished on elasticity,12 in which the procedure was different

and validated on a two-layer laminate under SH polarization.

The article is organized as follows. In Sec. II, the equa-

tions describing the acoustic wave propagation in the duct

of continuously varying radius are reminded. The procedure

to derive the effective properties, based on the first-order

Pad�e’s approximation of the matrix exponential anda)Email: Jean-Philippe.Groby@univ-lemans.fr
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Peano–Baker series expansion of the matricant, is described

and applied to our problem in Sec. III. Results in two spe-

cific cases, i.e., one where the profile leads to narrow duct

portion of short period and the other where the profile leads

to wider duct of longer period, are discussed in Sec. IV. In

particular, the dispersion introduced by the radius profile is

analyzed in view of homogenization limit.

II. GENERAL STATEMENT

We consider the 1D acoustic wave propagation in a d-

periodic duct of a continuously varying circular cross-

sectional area SðxÞ ¼ prðxÞ2 as depicted in Fig. 1. Assuming

an implicit time dependence e�ixt, pressure p(x), and flow

V ðxÞ ¼ SðxÞVðxÞ, where V(x) is the particle velocity, satisfy

the following first-order equations

ix~qðxÞV ¼ @p

@x
;

ix ~CðxÞp ¼ @V
@x

;

8>><
>>: (1)

where ~qðxÞ ¼ qðxÞ=SðxÞ and ~CðxÞ ¼ CðxÞSðxÞ are, respec-

tively, the reduced density and compressibility (inverse of

the bulk modulus, ~C ¼ 1= ~K). This system is usually cast in

the matrix form

@

@x
W ¼ 0 ix~qðxÞ

ix ~CðxÞ 0

" #
W ¼ AðxÞW; (2)

where W ¼ hp;V iT is the state vector and AðxÞ is the propa-

gation matrix. The latter matrix A depends on x and does

not commute with itself for different values of x, i.e.,

AðxÞAðx0Þ � Aðx0ÞAðxÞ 6¼ 0 when x0 6¼ x. The solution of

the system represented by Eq. (2), which relates the state

vectors at both sides of the unit-cell via WðdÞ ¼MdWð0Þ,
also involves a matricant Md that takes the form of a

Peano–Baker series expansion

Md ¼ Idþ
ðd

0

A xð Þdxþ
ðd

0

A xð Þ
ðx

0

A fð Þdf

� �
dxþ � � � ;

(3)

which is usually evaluated iteratively. Each iteration corre-

sponds to an increase in the order of the Taylor expansion.

Of particular interest is the second-order iteration that

reads as

M
ð2Þ
d ¼

1� x2

ðd

0

~qðxÞ
ðx

0

~CðfÞ df dx ix�qd

ix �Cd 1� x2

ðd

0

~CðxÞ
ðx

0

~qðfÞ df dx

2
66664

3
77775þ O �kdð Þ3; (4)

where �q ¼
Ð d

0
~qðxÞ dx=d and �C ¼

Ð d
0

~CðxÞ dx=d are the mean

values of ~q and ~C, and �k ¼ x
ffiffiffiffiffiffiffi
�q �C

p
.

III. DERIVATION OF THE EFFECTIVE PROPERTIES

We assume a d-periodic 1D reciprocal system of

respective propagation matrix Ae. The state vectors at both

sides of the unit-cell are related via WðdÞ ¼ expðAedÞWð0Þ
¼ TWð0Þ, with T the transfer matrix of respective elements

tij, ði; jÞ 2 ð1; 2Þ. Following Ref. 15, the propagation matrix

is correctly approximated by the inversion of the first-order

Pad�e’s approximation of the transfer matrix (i.e., the matrix

exponential)

Ae �
2

d
Tþ Idð Þ�1

T� Idð Þ

� 2

d

1

2þ t11 þ t22

t11 � t22 2t12

2t21 t22 � t11

" #
; (5)

which directly provides the elements of a reciprocal Willis

material

Ae ¼ ix
va

e qe

Ce �va
e

� �
; (6)

where qe is the effective density, Ce is the effective com-

pressibility, and va
e is the even Willis coupling related to the

FIG. 1. (Color online) Sketch of the

configuration and representation of the

scattering problem.

J. Acoust. Soc. Am. 154 (3), September 2023 Krpensk�y et al. 1661

https://doi.org/10.1121/10.0020849

 27 February 2024 07:29:12



possible asymmetry of the unit-cell. Note that the reciprocal

feature of the system, i.e., detðTÞ ¼ 1 has been accounted

for in Eq. (5). Checking this property can be employed as a

validation step (see Appendix A).

Introducing the matricant elements in Eq. (5) leads to

qe ¼ q; Ce ¼ C;

and

va
e ¼

ix
2d

ðd

0

~q xð Þ
ðx

0

~C fð Þdfdx

 

�
ðd

0

~C xð Þ
ðx

0

~q fð Þdfdx

!
: (7)

The effective density and compressibility are OðxÞ, while

va
e is exhibited at the next order and is thus OðxÞ2. The

effective density and compressibility are classical results

from the first-order homogenization. Quantities evaluated

according to the first-order homogenization are hereafter

referred to as sub-index H. When the profile is symmetric,

i.e., rðxÞ ¼ rðd � xÞ; 8x 2 ½0; d=2�; va
e vanishes (see the

Appendix B) and thus, the effective density and compress-

ibility become valid at the second order. In other words,

the first-order homogenization results become valid at the

second order when the profile is symmetric. When the pro-

file is piecewise constant, the effective properties,

including the Willis coupling, fall back on the formulas

derived in Ref. 28. In addition, the Willis coupling van-

ishes at low frequency because an asymmetric structure

falls back to symmetric at low frequency. The asymmetric

Willis coupling is effectively a linear function of the fre-

quency (in the absence of losses) because it appears at the

second order. In the absence of losses, va
e is purely

imaginary.

IV. RESULTS AND DISCUSSION

We consider a duct, the maximum radius of which is

a ¼ 1:5 cm, such that the profile r(x) consists of a reduction

of this radius. Only plane waves are also propagating below

the cut-on frequency of the first mode in a duct of radius a,

which is frequencies below �6100 Hz. Viscothermal losses

are accounted for via the Stinson’s formula,29 which are

addressed in Appendix C. The structuration of the duct

geometry introduced by the periodic radial profile r(x) indu-

ces dispersion of the waves traveling in the duct. To get a

grip on it, the dispersion relation of the acoustic waves in a

periodic duct composed of two different cross-sectional

areas, Smax associated with a radius a and ~S corresponding

to a radius ~r , of the same length, i.e., d=2, is considered.

This dispersion relation turns out to be that of a periodic 1D

Su–Schrieffer–Heeger model,30 where the coupling coeffi-

cients are simply given by the ratios of the two different

cross-sectional areas.31 This relation reads as

cos kd=2ð Þ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smax

Smax þ ~S

� �2

þ
~S

Smax þ ~S

 !2

þ 2Smax
~S

Smax þ ~S
� �2

cos kedð Þ

0
@

1
A

vuuut ; (8)

where ke is the effective wavenumber in the presence of the

periodic structuration and k is the wave number in the

straight duct. When ked ¼ p, the frequency of the lower

bound of the first Bragg bandgap can be calculated in the

absence of losses. This frequency, f B
~r , is supposed to provide

a good approximation of the quantity well below which the

effective models are valid. The question that naturally arises

becomes: which value of ~r (or ~S) should be considered? We

thus consider two limit cases: the first one where kd is small

but r(x) leads to a narrow duct portion and the second one

where kd is larger and r(x) leads to a wider duct cross-

sectional area on average.

Figures 2(a) and 2(b) depict the two continuous profiles

considered, the equations of which are provided in

Appendix D. In the first case, d ¼ 2 cm and the profile has a

maximum reduction of the duct radius of 90%. In the second

case, d ¼ 6 cm and the profile has a maximum reduction of

the duct radius of 50% and much less on average. These two

profiles are discretized in 301 segments which are used to

evaluate the integrals (trapezoidal rule) in the effective

parameter closed form expressions [Eq. (7)]. Instead of iter-

atively evaluating Eq. (3) to calculate the matricant, we

evaluate the total transfer matrix that links the state vectors

at both sides of the unit-cell, by multiplying the transfer

matrices of each segment Tj, i.e., Ttot ¼ P301
j¼1Tj. This solu-

tion is then considered as the reference solution, from which

the effective properties can be numerically evaluated12,15

via An ¼ logðTtotÞ=d (see also Appendix E). The corre-

sponding effective properties are referred to as the sub-

index n. Figures 2(c)–2(f) depict the dispersion relation (real

and imaginary parts of the wavenumber) of the acoustic

waves for both profiles. The lower bound of the Bragg

bandgap is numerically evaluated around 2300 Hz in both

cases. Either ~r ¼ min rðxÞð Þ (the minimum radius over a

period) or ~r ¼ 2�r � a (the radius that produces the same

area reduction as that produced by the profile) are consid-

ered to evaluate f B
~r . In the first case, f B

min rðxÞð Þ � 1100 Hz

and f B
2r�a � 4500 Hz, while in the second case,
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f B
min rðxÞð Þ � 1700 Hz and f B

2r�a � 2500 Hz. Although this fre-

quency is better approximated in the second case than in the

first case, f B
min rðxÞð Þ � 1100 Hz and f B

2r�a � 2500 Hz seem to

be appropriate for the first and second cases, respectively,

in view of the homogenization limit. In terms of rule, if

2�r � a > a=2; f B
2�r�a is appropriate and if 2�r � a < a=2;

f B
minðrðxÞÞ is appropriate. Nevertheless, speaking in terms of

percentage of ked does not seem to be representative when

asymmetric structures are considered because the main dif-

ference between first and second homogenization is not in

kH ¼ x
ffiffiffiffiffiffiffiffiffiffi
qeCe

p
instead of ke ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeCe þ v2

e

p
but rather in

ZH ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
qe=Ce

p
instead of Z6

e ¼ qe=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeCe þ v2

e

p
7v

	 

. The

wavenumber kn is even better approximated by kH than it is

by ke over the considered frequency range, as can be seen in

Figs. 2(c)–2(f). Please note that the range of ReðkedÞ over

which the dispersion relationships are represented is large

and far exceeds the range of validity of the usual homogeni-

zation procedures. The two impedances Z6
n are better

approximated by Z6
e than they are by ZH and in particular,

their phases [see Figs. 2(g)–2(j)]. Please note that the

dynamics of the impedance modulus in the second case

[Fig. 2(i)] is different from that in the first case [Fig. 2(g)].

The ratio between the wavelength and the period is thus not

the only limit in terms of homogenization, because it only

relies on the effective wavenumber and the impedance has

also to be accounted for. This is clearly visible on the scat-

tering coefficients by a single unit-cell depicted in Figs.

2(k)–2(n). In both cases, the scattering coefficients calcu-

lated via the second-order homogenization, that is, when the

Willis coupling is accounted for, is accurate over a wider

range of frequencies than those calculated via the first-order

homogenization. Although this is an obvious result, it is

worth noting. The asymmetry of the radius profiles are more

FIG. 2. (Color online) Continuous pro-

files in the (a) first and (b) second cases

(blue curve) as well as the two approx-

imations in two equal portions of dif-

ferent sectional areas with ~ra (dashed

red curve) and with ~rm (dotted black

curve). (c) and (e) Real and (d) and (f)

imaginary parts of the wavenumber–

dispersion relation–in the first and sec-

ond cases, respectively. (g) and (i)

Modulus and (d) and (f) phase of the

normalized impedances Z6S=Z0. (g)

and (i) Modulus and (d) and (f) phase

of the scattering coefficients, i.e., Rþ,

R�, and T. (c)–(f) Results as calculated

numerically (continuous curves), with

the first-order homogenization (dotted

curves), and with the second-order

homogenization (dashed curves) pro-

cedures. (k)–(n) The markers refer to

the scattering coefficients as calculated

with the first-order Pad�e’s approxima-

tion of expmðAedÞ.
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visible on the phases of the reflection coefficients than on

their moduli. These phase differences are clearly exhibited

when Willis coupling is accounted for via Z6
e [see Figs. 2(h)

and 2(j)]. The phase of the reflection coefficient as calcu-

lated with the first-order homogenization stands between

those as calculated with the Willis coupling. At low frequen-

cies, the phases are equal because an asymmetric structure

falls back to symmetric. When the frequency increases, the

phases start to differentiate. The results of the first-order

homogenization results fail when the phase difference

between the two reflection coefficients become too large,

while the results of the second-order homogenization are

still satisfactory. The second-order homogenization fails for

both transmission and reflection coefficients when the phase

of the reflection coefficients are not correctly modeled any-

more. Please note that the scattering coefficients of a single

unit-cell as calculated with the first-order Pad�e’s approxima-

tion of the function expmðAedÞ is in good agreement with

the numerically calculated scattering coefficients. This

means that the main source of error in the derivation of the

effective properties yields in the truncation of the

Peano–Baker series to evaluate the matricant at the second

iteration (second-order Taylor expansion). Please also note

that for longer structures, i.e., more than a single unit-cell,

the matrix exponential is mandatory to evaluate the scatter-

ing coefficients. Finally, the impact of the error on ke and

Z6
e can be tempered in the case of longer structures. Indeed,

the error on ke can have a greater impact in this case, as the

wave propagates over a greater distance in the material.

Figures 3(a)–3(l) depict the normalized effective proper-

ties as evaluated numerically (blue continuous curves) and

from their closed form expressions (red dashed curves) given

in Eq. (7) for both profiles. Closed form expressions are in

excellent agreement with the numerical results, although they

deviate when the frequency increases. As pointed out in the

previous paragraph, these effective properties are valid over a

shorter frequency range in the first case, which is when the

profile leads to a narrow duct portion, than in the second

case, which is when the period is longer, and the duct is

wider. Whatever the case, the Willis coupling cannot be

neglected in relation to the other effective parameters at high

frequency. The Willis coupling is almost purely imaginary

which is in accordance with Eq. (7). Compared to the other

normalized effective properties, the Willis coupling clearly

FIG. 3. (Color online) (a) and (c) Real

and (b) and (d) imaginary parts of the

normalized asymmetric Willis cou-

pling. (e) and (g) Real and (f) and (h)

imaginary parts of the normalized

effective density. (i) and (k) Real and

(j) and (l) imaginary parts of the nor-

malized effective compressibility.

Numerical results are depicted in blue

continuous curves and closed form

expressions of the coefficients are

depicted in red dashed curves.
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cannot be neglected, which emphasizes the need to use a

second-order homogenization procedure.

V. CONCLUSION

The effective properties describing the acoustic wave prop-

agation in a duct, the radius of which varies continuously and

periodically and leads to an asymmetric over the period, are

derived with the help of the first-order Pad�e’s approximation of

the matrix exponential function and truncation of the

Peano–Baker series. Each iteration corresponds to an increase

in the order of the Taylor expansion. The first-order (classical)

homogenization results are recovered using the first iteration to

evaluate the matricant, while the second-order homogenization,

derived using the second iteration to evaluate the matricant, fea-

tures the Willis coupling ad an additional parameter. The lowest

bound of the first Bragg bandgap, when the unit-cell radius pro-

file is approximated by a two-step function of identical indicator

function, is considered to assess the frequency well below

which the effective models are valid. The radial structuration

actually induces wave dispersion. It turns out that the validity of

the effective Willis material derived to model this asymmetric

periodic duct not only relies on a percentage of ked, but also on

the impedance modeling. Effectively, the asymmetric Willis

coupling that is exhibited at the second order impacts the effec-

tive wavenumber but also makes the impedance of the wave

propagating in the positive or in the negative directions different

as the unit-cell is asymmetric. The modeling of these two impe-

dances has also to be accounted for to derive the real and practi-

cal validity limit of the scattering coefficients calculated with

the effective properties. Wavenumbers, impedances, effective

properties, and scattering coefficients, as calculated with the

second-order homogenization procedure, are found in good

agreement with the numerical results calculated with the stan-

dard transfer matrix method, thus validating the proposed

method. This article paves the way for the modeling of more

complicated ducts with periodic asymmetric radial structuration,

like acoustic black holes, possibly in the presence of flow. It

also questions the validity limits of the effective properties.
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APPENDIX A: VERIFYING THAT THE MATRICANT IS
UNITARY AT THE SECOND ORDER

The determinant of the matrix Eq. (4) reads as

det M
ð2Þ
d

	 

¼ 1þ x2 �C�q �

ðd

0

~CðxÞ
ðx

0

~qðfÞ df dx

 

�
ðd

0

~qðxÞ
ðx

0

~CðfÞ df dx

!
þ O �kdð Þ3

¼ 1þ O �kdð Þ3: (A1)

Note that Eq. (A1) vanishes because both functions ~qðxÞ
and ~CðxÞ are zero for x < 0 and integration by part formula.

APPENDIX B: CANCELLATION OF THE WILLIS
COUPLING IN THE CASE OF A SYMMETRIC PROFILE

Equation (7) can be further expanded as follows:

va
e ¼

ix
2d

�q
ðd=2

0

~CðxÞ dx� �C

ðd=2

0

~qðxÞ dx

 

þ
ðd

0

~CðxÞ
ðx

d=2

~qðfÞ df dx

�
ðd

0

~qðxÞ
ðx

d=2

~CðfÞ df dx

!
: (B1)

When the profile is symmetric, i.e., r(x) is symmetric with

respect to d=2, the first two terms in Eq. (B1) cancel (sinceÐ d=2

0
~qðxÞ dx ¼ �qd=2 and

Ð d=2

0
~CðxÞ dx ¼ �Cd=2) and the last

two terms vanish since they represent an integration over

½0; d=2� of a multiple of a symmetric and an antisymmetric

function with respect to d=2.

APPENDIX C: ACCOUNTING
FOR THE VISCOTHERMAL LOSSES

Circular cross-sectional ducts are considered throughout

this article. The boundaries give rise to viscothermal losses

from viscous and thermal skin depths. Assuming that only

plane waves propagate in a circular cross-sectional duct of

radius r, the effective complex and frequency dependent

density and compressibility read as29

q ¼ q0 1� 2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ixq0=g

p J1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ixq0=g

p	 

J0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ixq0=g

p	 

0
B@

1
CA
�1

;

C ¼ 1þ 2 c� 1ð Þ
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iPrxq0=g

p J1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iPrxq0=g

p	 

J0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iPrxq0=g

p	 

0
B@

1
CA
,

cP0;

(C1)

where q0, c, g, and Pr are, respectively, the density, specific

heat ratio, dynamic density, and Prandtl number of the satu-

rating fluid, and P0 is the atmospheric pressure. The reduced

density and bulk modulus can then be evaluated by

~qðxÞ ¼ qðxÞ=SðxÞ and ~CðxÞ ¼ CðxÞSðxÞ, with SðxÞ ¼ prðxÞ2
for each value of r(x).

APPENDIX D: EQUATIONS OF THE TWO PROFILES

The equations of the two profiles considered are provided

below. Both are generated via asymmetric Gaussian functions

G ðxÞ ¼ 1ffiffiffiffiffiffi
2p
p exp �ðx=r� fÞ2

2

� �
1þ erf a

x=r� fffiffiffi
2
p

� �� �
;

(D1)

with erfðxÞ being the error function and r, f, and a being the

constant values.
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The period d is 2 cm in the first case and the profile is

rðxÞ ¼ a� 0:9a
G ðxÞ

max G ðxÞð Þ ; (D2)

with a¼ 40, f ¼ 0:1, and r ¼ 5� 10�3, and maxðf ðxÞÞ is

the maximum value of f(x), x 2 ½0; d�. The period d is 6 cm

in the second case and the profile is

rðxÞ ¼ a� 0:5a
G ðxÞ

max G ðxÞð Þ � 0:2a
G †ðxÞ

max G †ðxÞ
� � ; (D3)

with a ¼ a† ¼ 40; f ¼ 0:1, and r ¼ 5� 10�3, and f† ¼ 0:2,

and r† ¼ 5� 10�2.

APPENDIX E: NUMERICAL EVALUATION
OF THE EFFECTIVE PROPERTIES

Let us assume that the state vectors at both sides of the

unit-cell of length d are linked by the total transfer matrix

Ttot. The effective properties can be numerically evaluated

via

An ¼ logm Ttotð Þ=d

¼ ix
va

n qn

Cn �va
n

" #

¼ 1ffiffiffi
2
p Zþn �Z�n

1 1

" #
ikn 0

0 �ikn

" #
1ffiffiffi
2
p

1=Zþn �1

1=Z�n 1

" #
:

(E1)

The impedances Z6
n and wavenumber kn can simply be cal-

culated from the diagonalization of Ae. This procedure turns

out to be a numerical version of the procedure derived in
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Chapter 4

Conclusions and future work

In the thesis the control and analysis of the acoustic and elastic wave fields
was demonstrated by the six selected inhomogeneous structures corresponding
to the six publications included in Chapt. 3, whereas in the preceding Chapt.
2 an overview of the mathematical methods commonly used in the papers
was provided.

The first publication deals with the propagation of elastic Love-type waves
inside of a FGM viscoelastic inhomogeneous isotropic elastic surface layer
(laid over a homogeneous substrate) whose density and shear modulus vary
according to the respective material function. The exact analytical solution to
the model equation was derived in a form of a combination of the triconfluent
Heun functions for a completely new class of profiles of the material function.
Furhermore, the derivation of the corresponding dispersion equation was
performed followed by several case studies with the observation that the
dispersion relation can be controlled by a variable height of the corresponding
gaussian-like profile of the material function.

The second publication is a direct continuation to the first one, whereas
in this case the surface layer is repeated several times, resulting in a locally
periodic inhomogeneous layer represented by the corresponding locally pe-
riodic material function laid over a homogeneous substrate. The solutions
from the first publication were extended to the whole structure by employing
the Floquet-Bloch theory and the case study was performed again with the
Gaussian-like profile of the first period of the material function. The results
were presented by me at the The 29th International Congress on Sound and
Vibration.
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In the third publication we focused on a two-dimensional acoustical waveg-

uide with nonuniform (inhomogeneous) mean flow profile given by a symmetric
polynomial, for which an approximate analytical solution was formulated
based on the triconfluent Heun functions and the case study followed in order
to assess the approximation validity for several powers of the profile, whereas
in principle this type of approximate analytical solution is generally applicable
to other types of the mean flow profiles as long as the approximation is still
valid. The comparison of this approach with the WKB method was discussed
further highlighting advantages of the solution provided by us.

In the fourth paper, we proposed a novelty type of a GRIN structure
utilised for manipulation of the elastic P-wave field, specifically focusing
and deflecting. The proposed structure consists of inhomogeneous FGM
plates layered in parallel to each other and separated by thin gaps. By the
WKB method applied to the corresponding model equation an approximate
analytical expression for the effective phase velocity of each one of the plates
was formulated and based on the geometrical approach the focusing and the
deflecting structures were proposed and further validated by a numerical
simulations.

The fifth paper presents an exact analytical solution to the model equation
describing the propagation of elastic SH waves in a FGM viscoelastic locally
periodic inhomogeneous structure for a general angle of incidence of the
incoming plane wave by the Heun functions and further extended to the
whole domain by employing the Floquet-Bloch theory. Based on that the
expressions for the transmission and reflection coefficients are derived followed
by a few case studies followed by the observation that this type of structure
behaves as a selective band-stop filter, whereas the positions and the widths
of the respective frequency bands can be controlled by a suitable choice of
the second materials of the FGM structure.

In the sixth paper, the second order low frequency limit homogenization was
performed on an inhomogeneous acoustical waveguide whose cross-sectional
are varies continuously along the direction of the wave propagation with
the first order model differential equations formulated in the state-space
representation by employing the Peano-Baker expansion of the state matrix,
resulting in analytical expressions for the effective density, compressibility and
the Willis coupling coefficients. The frequency limit of this approximation
is further discussed together with the numerical verification. This approach
presents a low frequency alternative to the standardly used TMM with several
advantages.

At this point there are many possibilities for the future continuation
of the research. The main focus is currently devoted to the study of an
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acoustic black hole (ABH) which (in theory) should act as a non-reflective
termination for flexural waves propagating inside of a homogeneous elastic
beam. The ABH is realized by adding a relatively short part to the edge of the
beam with continuously varying (diminishing) thickness and either including
the viscoelastic losses or assuming the ABH itself to be terminated with a
dissipation element modifying the overall impedance of the ABH. A model
differential equation of a fourth order (Euler-Bernoulli equation, see e.g., [14])
can be derived and by using a factorization method separated into the two
second order equations of the Webster type. For a general cubic polynomial
profile of the ABH we are then able to express the exact analytical solution by
a combination of the Heun functions or (in some specific cases) hypergeometric
gunctions. Based on varying the coefficients of the polynomial (which play
the role of the parameters of the respective inhomogeneous structure here)
we can then asses the possibility of controlling the reflection coefficient by
the shape of the ABH.

Another possibility for the future work is to return back to the problematics
of propagation of the Love-type waves inside of a FGM viscoelastic inhomoge-
neous layer, but in this case to express the material function in the same way
as in the fifth paper, therefore enabling us to express the general solution
as a combination of the Heun functions (in contrast to the previously used
triconfluent Heun functions in the first two papers). The same extension can
then be made to the locally periodic layer by employing the Floquet-Bloch
theory. A study then can be made assessing the possibilities of controlling
the corresponding dispersion relation by the suitable choice of the second
material of the respective FGM.

Next, the approach presented for SH waves in the fifth paper can also be
applied to derive an exact analytical solution to the model equation describing
the propagation of the longitudinal waves through a locally periodic elastic
structure. The results can then serve as a basis for utilizing the Su-Schrieffer-
Heeger (SSH, see e.g., [15]) model which is an effective method for determining
the dispersion relation of the corresponding locally periodic structures.

As another potential future work can be mentioned a direct continuation
to the sixth presented paper. Since the demonstrated second order homogeni-
sation procedure works only in the low frequency limit, it can be further
accompanied by the WKB approximation method which on the contrary
works in the high frequency limit. By combination of those two approaches
an approximate expressions for the transmission and reflection coefficients
can be made for both the low frequencies and the high frequencies together,
providing (possibly) a good approximation in the whole frequency range.
It should also be mentioned that this type of technique can be potentially
utilised for a any area of acoustics and elastoacoustics where the respective
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model equation (including a continuously varying material function) can be
transformed into the state space model.

102



Bibliography

[1] K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical Methods for
Physics and Engineering. Cambridge University Press, third edition,
2006. ISBN 978-0-521-67971-8.

[2] G. Kristensson. Second Order Differential Equations. Springer, 2010.
ISBN 978-1-4419-7019-0.

[3] A. Ronveaux. Heun’s differential equations. Oxford University Press,
1995. ISBN 978-0-19-859695-0.

[4] T. Birkandan and M. Hortaçsu. Quantum field theory applications of
heun type functions. Reports on Mathematical Physics, 79(1):81–87,
February 2017. doi: 10.1016/s0034-4877(17)30022-8.

[5] M. Hortaçsu. Heun Functions and Some of Their Applications in Physics.
Advances in High Energy Physics, 2018:1–14, July 2018. doi: 10.1155/
2018/8621573.

[6] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST
Handbook of Mathematical Functions. Cambridge University Press, 2010.
ISBN 978-0-521-14063-8.

[7] D. T. Blackstock. Fundamentals of Physical Acoustics. John Wiley &
Sons, 2000. ISBN 978-0-471-31979-5.

[8] A. Ishimaru. Electromagnetic Wave Propagation, Radiation, and Scat-
tering. IEEE Press Series on Electromagnetic Wave Theory. John Wiley
& Sons, 2017. ISBN 978-1-118-09881-3.

[9] M. S. P. Eastham. The Spectral Theory of Periodic Differential Equations.
Scottish Academic Press, 1973. ISBN 0701119365.

103



4. Conclusions and future work ..............................
[10] N. Jiménez, J.-P. Groby, and V. Romero-García. The transfer ma-

trix method in acoustics: Modelling one-dimensional acoustic systems,
phononic crystals and acoustic metamaterials. In N. Jiménez, O. Um-
nova, and J.-P. Groby, editors, Acoustic Waves in Periodic Structures,
Metamaterials, and Porous Media, page 103–164. Springer, 2021. ISBN
978-3-030-84300-7. doi: 10.1007/978-3-030-84300-7_4.

[11] G. Bao and L. Wang. Multiple cracking in functionally graded ce-
ramic/metal coatings. International Journal of Solids and Structures,
32(19):2853–2871, October 1995. doi: 10.1016/0020-7683(94)00267-z.

[12] M. Naebe and K. Shirvanimoghaddam. Functionally graded materials: A
review of fabrication and properties. Applied Materials Today, 5:223–245,
December 2016. doi: 10.1016/j.apmt.2016.10.001.

[13] D. T. Sarathchandra, S. Kanmani Subbu, and N. Venkaiah. Functionally
graded materials and processing techniques: An art of review. Materials
Today: Proceedings, 5(10):21328–21334, 2018. doi: 10.1016/j.matpr.2018.
06.536.

[14] J. Y. Lee and W. Jeon. Exact solution of Euler-Bernoulli equation for
acoustic black holes via generalized hypergeometric differential equation.
Journal of Sound and Vibration, 452:191–204, July 2019. doi: 10.1016/j.
jsv.2019.02.016.

[15] A. Coutant, A. Sivadon, L. Zheng, V. Achilleos, O. Richoux,
G. Theocharis, and V. Pagneux. Acoustic Su-Schrieffer-Heeger lat-
tice: Direct mapping of acoustic waveguides to the Su-Schrieffer-Heeger
model. Physical Review B, 103(22), June 2021. doi: 10.1103/physrevb.
103.224309.

104



Appendix A

List of author’s publications

A.1 Related to the thesis

A.1.1 Publications indexed in Web of Science

.KRPENSKÝ, A. and M. BEDNAŘÍK. Surface Love-type waves propa-
gating through viscoelastic functionally graded media. Journal of the
Acoustical Society of America. 2021, 150(5), 3302-3313. ISSN 0001-4966.
DOI 10.1121/10.0006964..KRPENSKÝ, A., V. HRUŠKA and M. BEDNAŘÍK. A new class
of approximate analytical solutions of the Pridmore-Brown equation.
Journal of Mathematical Physics. 2022, 63(8), ISSN 0022-2488. DOI
10.1063/5.0098473..KRPENSKÝ, A., V. HRUŠKA and M. BEDNAŘÍK. Elastic P-wave
manipulation utilizing functionally graded parallel plate gradient refrac-
tive index structures. Wave Motion. 2023, 122 ISSN 1878-433X. DOI
10.1016/j.wavemoti.2023.103208.. KRPENSKÝ, A. and M. BEDNAŘÍK. Exact analytical solution for shear
horizontal wave propagation through locally periodic structures realized
by viscoelastic functionally graded materials. Composite Structures.
2023, 324 ISSN 1879-1085. DOI 10.1016/j.compstruct.2023.117539.

105



A. List of author’s publications ..............................
.KRPENSKÝ, A., M. BEDNAŘÍK and J.-P. GROBY. Willis couplings

in continuously varying cross-sectional area duct. Journal of the Acous-
tical Society of America. 2023, 154 1660-1666. ISSN 0001-4966. DOI
10.1121/10.0020849.

A.1.2 Publications indexed in Scopus

.KRPENSKÝ, A. and M. BEDNAŘÍK. Surface love-type waves propa-
gating through locally periodic inhomogeneous media. In: Proceedings
of the 29th International Congress on Sound and Vibration. Prague,
2023-7-9/2023-7-13. IIAV CZECH s.r.o., 2023. ISSN 2329-3675. ISBN
978-80-11-03423-8.

A.2 Not related to the thesis

A.2.1 Publications indexed in Web of Science

. HRUŠKA, V., A. KRPENSKÝ, M. BEDNAŘÍK and F. CZWIELONG.
Novel design for acoustic silencers for ducts with flow based on the bound
states in the continuum. Archive of Applied Mechanics. 2023, 93(12),
4517-4526. ISSN 0939-1533. DOI 10.1007/s00419-023-02508-y.

A.2.2 Other

. HRUŠKA, V., A. KRPENSKÝ, M. BEDNAŘÍK and F. CZWIELONG.
Design of low drag reactive silencers based on the bound states in the
continuum. In: Forum Acusticum 2023. Torino, 2023-09-11/2023-09-15.
Madrid: European Acoustics Association, 2023. p. 3233-3237. ISSN
2221-3767. ISBN 978-88-88942-67-4. DOI 10.61782/fa.2023.0834.

106


	Introduction
	Mathematical methods
	Heun equations
	Sigular points of differential equations
	Frobenius solution around regular singular point
	Heun equation
	Triconfluent Heun equation

	Webster-type equation
	WKB approximation
	Floquet-Bloch theory
	Equation with periodic coefficients
	Liouville's formula
	Floquet theory
	Bloch waves

	Functionally graded materials

	Collection of publications
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI:

	Conclusions and future work
	Bibliography
	List of author’s publications
	Related to the thesis
	Publications indexed in Web of Science
	Publications indexed in Scopus

	Not related to the thesis
	Publications indexed in Web of Science
	Other



